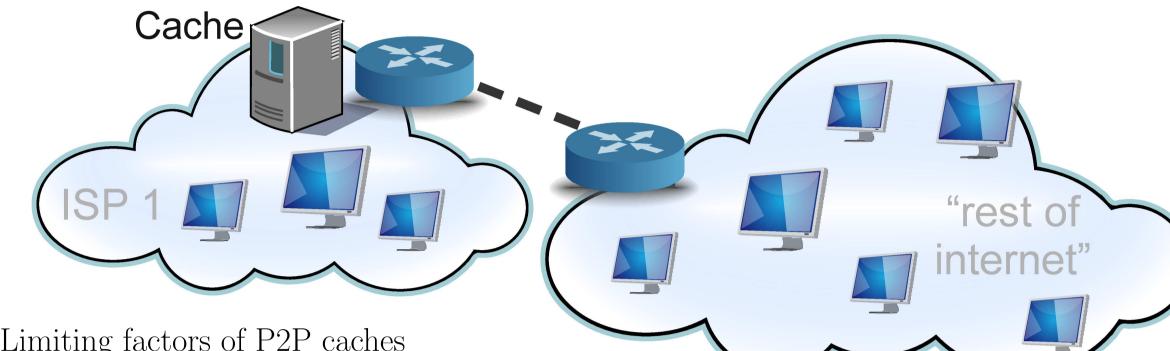


ROYAL INSTITUTE OF TECHNOLOGY


On the Benefits of P2P Cache Capacity Allocation

Frank Lehrieder[†], Valentino Pacifici^{*}, György Dán^{*} Institute of Computer Science, University of Würzburg School of Electrical Engineering, KTH Royal Institute of Technology

Decreasing Inter-ISP Traffic

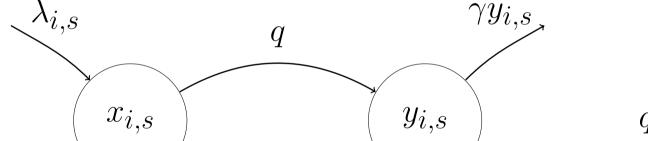
- Inter-ISP traffic is a source of cost for ISPs
- Two directions to decrease inter-ISP traffic [1]:
- 1. Locality-awareness based on
- -ISP-provided information (ALTO, P4P, "Oracle")
- Measurements or third-party provided information (ONO, BNS) 2. P2P Caching

Performance Evaluation - Simulations

• Incoming transit traffic estimations based on two assumptions [2]:

1. Leechers with free download capacity compete with each other for the available upload rate 2. The distribution of the sources of content downloaded in ISP i is proportional to the amount of upload rate exposed to leechers in ISP i

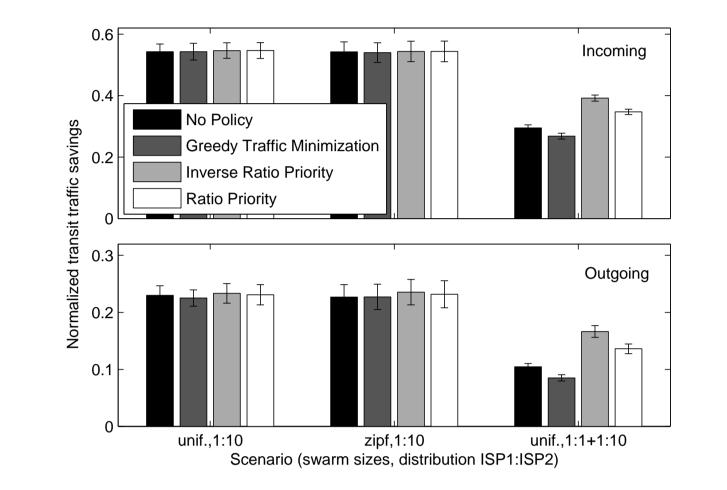
$$I_i(z_s, k_i) = D_i^r \left(\frac{\sum_{j \neq i} u_j^P}{u_i^{PL} + \sum_{j \neq i} u_j^P} \right)$$


 $D_i^r = f(k_i, u_i^{PL}, (u^P)_i)$ total receiving rate of leechers in ISP *i*

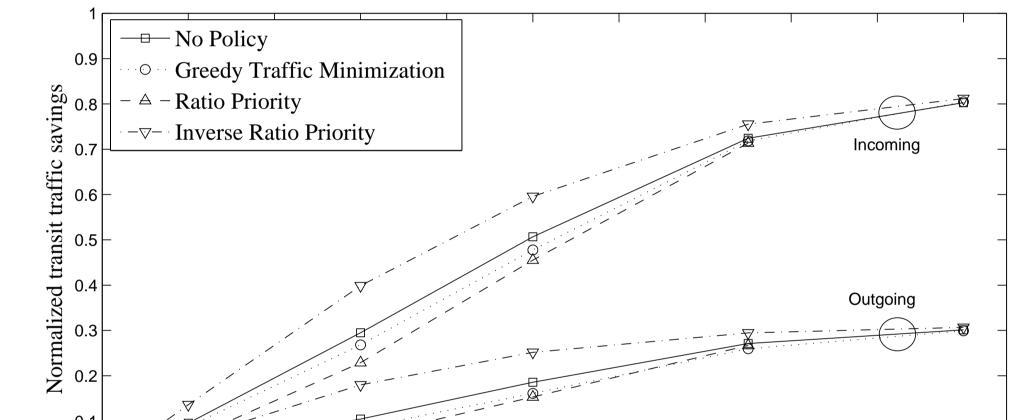
 $-u_i^P = \mu(\eta x_i + y_i)$ publicly available upload rate in ISP *i* available to leechers in every ISP $-u_i^{PL} = \max\left[0, \mu(\eta(x_i - 1) + y_i)\right]$ publicly available upload rate in ISP *i* available to a local

- Limiting factors of P2P caches
- 1. Storage capacity \Rightarrow cache eviction
- 2. Bandwidth
- Significant impact of P2P caching on both instantaneous transit traffic and system dynamic [2] • Key question:
- -Should bandwidth be actively managed such as to minimize the inter-ISP traffic?

The Impact of P2P Caching $\mathbf{2}$

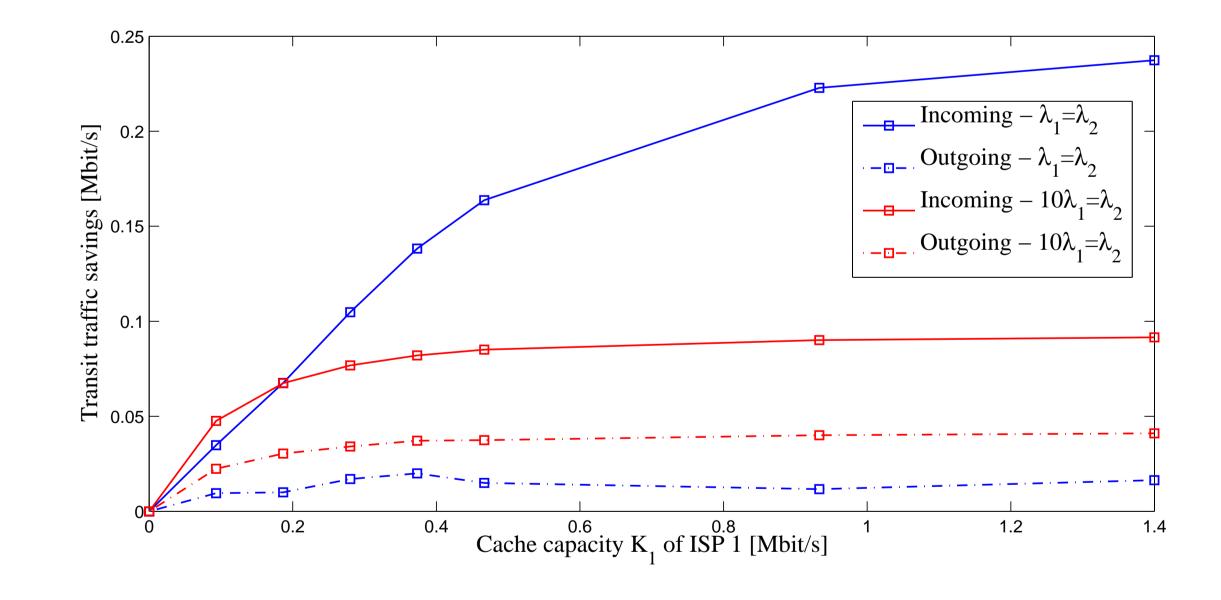

- $\mathcal{I} = \{1, ..., I\}$ set of ISPs, $\mathcal{S} = \{1, ..., S\}$ set of swarms
- $\lambda_{s,i}$ arrival rate of leecher of ISP $i \in \mathcal{I}$ to swarm $s \in \mathcal{S}$
- θ leechers' impatience, γ departing rate of seeders, μ upload capacity of peers
- $Z_{i,s}(t) = (x_{i,s}(t), x_{i,s}(t))$ state of swarm s in ISP i as the number of leechers and seeders in ISP i in swarm s at time t
- P2P cache:
- $-K_i < \infty$ upload capacity of cache in ISP *i*, it serves only peers in ISP *i*

 $q = \min(cx_{i,s}, x_{i,s}\mu(\eta x_s + y_s)/x_s + k_{i,s})$


- leecher
- Simulations using ProtoPeer [3]

Incoming and outgoing transit traffic savings for the scenarios described in the table:

Scenario	Identical swarms (s)	$rac{\lambda_s}{\lambda}$	$\frac{\lambda_{2,s}}{\lambda_{1,s}}$
unif.,1:10	1,,12	1/12	10
<i>zipf,1:10</i>		$\propto \frac{1}{s}$	10
unif.,1:1+1:10	1,,10	1/12	10
	11,12	1/12	1


Incoming and outgoing transit traffic saving for the unif., 1:1+1:10 scenario:

 $\theta x_{i,s}$

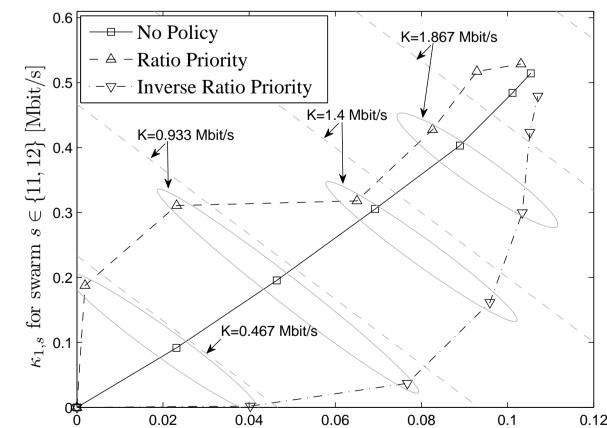
• $I_{i,s}(Z_s(t), k_{i,s}(t))$ incoming transit traffic rate in ISP *i*

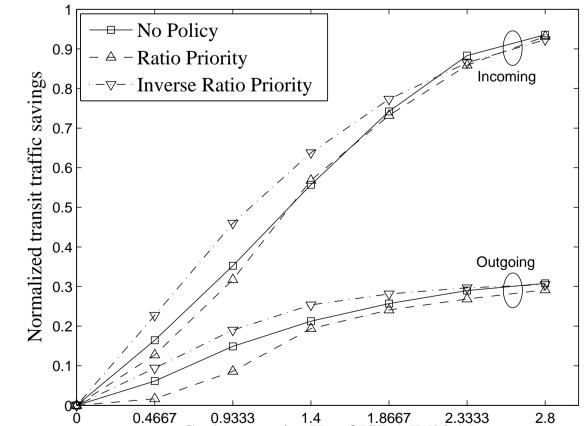
• The impact of caching on the transit traffic depends on the distribution of the peers among ISPs

Cache Capacity Allocation Policies 3

A cache capacity allocation *policy* of ISP *i* specifies $k_i(t)$ from the set of feasible cache capacity allocations of ISP *i*: $\mathcal{K}_i = \{k_i | \sum_{s \in \mathcal{S}} k_{i,s} \leq K_i\}$

• No Policy:


-ISP *i* does not actively allocate its K_i


Cache capacity K₁ of ISP 1 [Mbit/s]

Experimental Validation $\mathbf{5}$

- Experiments on ca. 500 Planet-lab nodes using Bit-Torrent:
- -File-size 3.5 MB
- Peers' upload capacity 23 kbit/s, download capacity 373 kbit/s
- -unif., 1:1+1:10 scenario
- -Cache: 12 peers running on the same Linux machine
- Cache capacity allocation policies implemented using Linux Traffic Control (tc)

Experimental results for the unif., 1:1+1:10 scenario:

• Uniform Capacity Reservation:

- The same amount of cache capacity is reserved to every swarms: $k_{i,s} = \frac{K_i}{|S|}$ • Greedy Traffic Minimization:

- "short term" approximation, does not consider the impact of $k_i(t)$ on the evolution of Z(t)

 $k_i(t) = \underset{k_i \in \mathcal{K}_i}{\operatorname{arg\,min}} \sum_{s \in \mathcal{S}} I_{i,s}(Z_s(t_n), k_{i,s}) \text{ for } t_n < t < t_{n+1}$

-every swarm with $k_{i,s} \neq 0$ should provide equal marginal traffic saving at optimality • Priority Based Allocation Policies:

- -Idea: priority to swarms based on the ratio $r = \lambda_2/\lambda_1$
- -Approximated using the instantaneous ratio: $\hat{r}_{i,s} = \frac{x_{i,s}(t)}{\sum_{i \neq i} z_{i,s}(t)}$
- -Ratio Priority: swarms with highest ratio have highest priority

- Inverse Ratio Priority: swarms with lowest ratio have highest priority

 $\kappa_{1,s}$ for swarm $s \in \{1, \ldots, 10\}$ [Mbit/s]

Cache capacity allocations of ISP 1

 7 Cache capacity K_{1} of ISP 1 [Mbit/s]

Normalized transit traffic saving of ISP i

References

[1] G. Dán, T. Hossfeld, S. Oeschner, P. Cholda, R. Stankiewitz, I. Papafili, G. D. Stamoulis, "Interaction Patterns between P2P Content Distribution Systems and ISPs", in *IEEE Commu*nications Magazine, vol. 49, num. 5, May 2011, pp. 222-230.

[2] F. Lehrieder, G. Dán, T. Hossfeld, S. Oechsner, V. Singeorzan, "The Impact of Caching on BitTorrent-like Peer-to-peer Systems", in 10th IEEE International Conference on Peer-to-Peer Computing 2010 - IEEE P2P 2010, Delft, Netherlands, 2010, pp. 6978.

[3] W. Galuba, K. Aberer, Z. Despotovic, W. Kellerer "ProtoPeer: A P2P Toolkit Bridging the Gap between Simulation and Live Deployment", in *Proceedings of International Conference* on Simulation Tools and Techniques, Mar. 2009.