

ROYAL INSTITUTE OF TECHNOLOGY

A Game Theoretic Analysis of Selfish **Content Replication on Graphs**

Valentino Pacifici and György Dán Laboratory of Communication Networks - ACCESS Linnaeus Center KTH Royal Institute of Technology

Selfish Content Replication

- **Replication group**: nodes and users located near the nodes.
- 1. Node *i* can replicate K_i objects from the set \mathcal{O}
- 2. Objects are accessed by local or neighboring users, the demand for object $o \in \mathcal{O}$ of the users at node $i \in N$ is $w_i^o \in \mathbb{R}_+$
- 3. The cost incurred by a user accessing an object is
- $-\alpha_i$, if the object is replicated locally
- $-\beta_i$, if the object is replicated in a neighboring node
- $-\gamma_i$, otherwise
- 4. No central authority \Rightarrow No optimal solution enforced.

- Nash Equilibrium Convergence 4
- Complete social graph
- Every best reply path in a replication game played over a complete social graph is finite.
- Non-complete social graph
- The following graph topology allows a cycle in a best reply path:

• Key questions

1. Existence of a state where every node is satisfied with the object allocation 2. Conditions under which the nodes reach such a state updating their decisions myopically

The model - Replication Game $\mathbf{2}$

- Replication game $< N, (\mathcal{R}_i), (U_i) >$:
- -N set of nodes,
- $-\mathcal{R}_i$ set of feasible replication configurations for player *i*.
- $-U_i$: utility function for player *i*.
- The nodes choose to replicate objects from the set \mathcal{O}
- $-r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$, where $r_i^o \in \{0, 1\}$ is 1 if object o is replicated in node i $-r_i \in \mathcal{R}_i$ is feasible if $\sum_o r_i^o \leq K_i$

The cycle is made of the following sequence of best replies:

Player	<i>P1</i>	P2	P3	P4	Ρ5	P6	Ρ7	P8
Preferences	A <b< th=""><th>B<c< th=""><th>C<d< th=""><th>D<a< th=""><th>В</th><th>С</th><th>D</th><th>А</th></a<></th></d<></th></c<></th></b<>	B <c< th=""><th>C<d< th=""><th>D<a< th=""><th>В</th><th>С</th><th>D</th><th>А</th></a<></th></d<></th></c<>	C <d< th=""><th>D<a< th=""><th>В</th><th>С</th><th>D</th><th>А</th></a<></th></d<>	D <a< th=""><th>В</th><th>С</th><th>D</th><th>А</th></a<>	В	С	D	А
$\mathbf{r}(0)$	A	В	D	А	В	С	D	А
r(1)	A	В	C	А	В	С	D	А
r(2)	B	В	С	A	В	С	D	А
r(3)	В	В	С	D	В	С	D	А
r(4)	B	¹ C	С	D	В	С	D	А
r(5)	A	С	C	D	В	С	D	А
r(6)	А	C	D	D	В	С	D	А
r(7)	A	B	D	D	В	С	D	А
r(8)	A	В	D	A	В	С	D	Α

 $-\operatorname{If} K_i = 1 \; \forall i \in N$

From every strategy profile there exists a best reply path that leads to a NE in a finite number of steps.

The game is weakly acyclic in best replies

 $-\operatorname{If} \beta_i = \alpha_i \; \forall i \in N$

Every lazy improvement path is finite.

• Limited interactions between nodes modeled with a **social graph**

 $-\mathcal{N}(i)$ is the set of neighbors of node *i*.

• Utility function: sum of the cost savings $U_i(r_i, r_{-i}) = \sum_o U_i^o(r_i^o, r_{-i}^o)$

 $U_{i}^{O}(1, r_{-i}) = \begin{cases} w_{i}^{O}[\gamma_{i} - \alpha_{i}] & \text{if } \prod_{j \in \mathcal{N}(i)} (1 - r_{j}^{O}) = 1\\ w_{i}^{O}[\beta_{i} - \alpha_{i}] & \text{if } \prod_{j \in \mathcal{N}(i)} (1 - r_{j}^{O}) = 0 \end{cases}$

• Improvement path: a sequence of strategy profiles r(0), r(1), ..., such that in every step t there is one player that strictly increases its utility by updating her strategy from $r_i(t-1)$ to $r_i(t)$. • An update from $r_i(t-1)$ to $r_i(t)$ can be

Improvement step	Best reply step
$U_i(r_i(t+1), r_{-i}(t)) > U_i(r_i(t), r_{-i}(t))$	$U_i(r_i(t), r_{-i}(t-1)) \ge U_i(r_i(t-1), r_{-i}(t-1))$
	$\forall r_i \in \mathcal{R}_i$

• Lazy improvement step of player i: an improvement step with minimal number of changes among all improvement steps that lead to the same utility.

Nash Equilibrium - Existence 3

• Nash Equilibrium: a strategy profile r^* in which every player's strategy is a best reply to the other players' strategies

Fast convergence based on graph coloring \mathbf{O}

Objective: relax global synchronization requirement for convergence to NE • If $\beta_i = \alpha_i \ \forall i \in N$

If player i makes an improvement step at time t only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time t, then every lazy improvement path is finite.

Plesiochronous better reply dynamic (PBRD)

Objective: maximize the convergence speed of the PBRD

1. Find a minimum vertex coloring of the social graph

- 2. Players with the same color update their strategy simultaneously
- Complexity: find the chromatic number of the graph \Rightarrow NP-hard
- Efficient distributed algorithms exist
- Given a coloring, the number of steps required to reach the NE is significantly smaller than for ABRD

-PBRD significantly faster for sparse social graphs

$U_i(r_i^*, r_{-i}^*) \ge U_i(r_i, r_{-i}^*) \quad \forall \ r_i \in \mathcal{R}_i, \ \forall \ i \in N.$

• The following algorithm always ends in a NE:

- 1. Play best replies in isolation
- 2. Re-arrange the players according to the social graph
- 3. Give a chance to play to every player
- 4. Play in arbitrary order

• Every graphical replication game possesses a pure strategy Nash equilibrium.

- The existence of cycles when $\alpha_i \neq \beta_i$ does not affect the results
- -Convergence properties different on a complete social graph than on a sparse graph, in accordance with the complexity of finding the optimal solution

References

- [1] G. Dán, "Cache-to-cache: Could ISPs cooperate to decrease peer-to-peer content distribution costs?" IEEE Trans. Parallel Distrib. Syst., to appear.
- [2] B. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou, and J. Kubiatowicz, "Selfish caching in distributed systems: a game-theoretic approach," in Proc. of ACM Symposium on Principles of Distributed Computing (PODC), July 2004.
- [3] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis, "Distributed selfish replication," IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 12, pp. 1401–1413, 2006.