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Coordinated Selfish Distributed Caching for Peering
Content-centric Networks

Valentino Pacifici and Gyorgy Déan

Abstract—A future content-centric Internet would likely con-
sist of autonomous systems (ASes) just like today’s Internet. It
would thus be a network of interacting cache networks, each of
them optimized for local performance. To understand the influ-
ence of interactions between autonomous cache networks, in this
paper we consider ASes that maintain peering agreements with
each other for mutual benefit, and engage in content-level peering
to leverage each others’ cache contents. We propose a model of
the interaction between the caches managed by peering ASes.
We address whether stable and efficient content-level peering
can be implemented without explicit coordination between the
neighboring ASes. We show that content-level peering leads to
stable cache configurations, both with and without coordination.
However, peering ISPs that coordinate to avoid simultaneous
updates converge to a stable configuration more efficiently.
Furthermore, if the content popularity estimates are inaccurate,
content-level peering is likely to lead to cost efficient cache
allocations. We validate our analytical results using simulations
on the measured peering topology of more than 600 ASes.

Index Terms—Content-centric networks, cache networks, au-
tonomous caches, content peering, stable content allocations.

I. INTRODUCTION

Recent proposals to re-design the Internet with the aim of
facilitating content delivery share the common characteristic
that caches are an integral part of the protocol stack [1], [2],
[3]. In these content-centric networks users generate interest
messages for content, which are forwarded until the content
is found in a cache or the interest message reaches one of the
content’s custodians. The resulting network is often modeled
as a network of interacting caches. Several recent works aimed
at optimizing the performance of a cache network through
dimensioning cache sizes as a function of their location in the
cache network [4], by routing interest messages to efficiently
find contents [5] and by tuning the cache eviction policies used
by the individual caches [6], [7].

Similar to the structure of today’s Internet, a future content-
centric network is likely to be a network of autonomous
systems (AS). ASes are typically profit seeking entities and use
an interior gateway protocol (IGP) for optimizing their internal
routes. Nevertheless, they maintain client-provider and peering
business relations with adjacent ASes [8], and they coordinate
with each other using the Border Gateway Protocol (BGP),
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which allows them to exchange reachability information with
their neighbors. The effect of BGP coordination on the stability
and performance of global IP routing has been extensively in-
vestigated, e.g., the negative impact of damping route flaps [9],
[10], the number of updates needed for BGP convergence [11],
and general conditions for cycle-free IP routes [12].

ASes are likely to play a similar role in a future content-
centric Internet as they do today, and thus, instead of a single
cache network dimensioned and managed for optimal global
performance, the content-centric Internet will be a network
of cache networks, each cache network optimized for local
performance. In lack of a central authority capable of enforcing
a globally optimal allocation of contents to caches, it will be
the interaction between cache networks that will determine
the global cache allocation. To make such a network of
cache networks efficient, we need to understand the potential
consequences of interaction between the individual cache
networks in terms of stability and in terms of the convergence
of the cache contents, and the potential impact of coordination
between the networks of caches.

In this work we consider a network of ASes that maintain
peering agreements with each other for mutual benefit. The
traffic exchanged between the peering AS is charged less than
the traffic that each AS exchanges with its transit provider. The
ASes maintain their own cache networks, and they engage in
content-level peering in order to leverage each others’ cache
contents, which in principle should enable them to decrease
their transit traffic costs. The interaction between the caches
could, however, lead to unforeseen instability and oscillations,
as in the case of BGP. Thus, a fundamental question that
one needs to answer is whether stable and efficient content-
level peering can be implemented without explicit coordination
between the neighboring cache networks.

In this paper we address this question by proposing a model
of the interaction and the coordination between the caches
managed by peering ASes. We show that, with or without
coordination, content-peering leads to stable cache configura-
tions. Furthermore, we investigate how the convergence speed
and the efficiency of the caching decisions are affected by
coordination. Finally, we give insight into the structure of
the most likely cache allocations in the case of inaccurate
estimation of the arrival rate of user requests. We illustrate the
analytical results using simulations on the measured peering
topology of more than 600 ASes.

The rest of the paper is organized as follows. In Section II
we describe the system model. In Section III we consider
caching under perfect information, and in Section IV we
consider the case of imperfect information. In Section V we



present numerical results, and in Section VI we review related
work. Section VII concludes the paper.

II. SYSTEM MODEL

We consider a set N of autonomous ISPs. Each ISP 7 € N is
connected via peering links to some ISPs j € N. We model the
peering links among ISPs by an undirected graph G = (N, E),
called the peering graph. We call N/ (4) the set of neighbors of
ISP i € N in the peering graph, i.e. N'(7) = {j|(i,j) € E}.
Apart from the peering links, every ISP can have one or more
transit links.

A. Content Items and Caches

We denote the set of content items by O. We follow
common practice and consider that every item o € O has
unit size [13], [14], which is a reasonable simplification if
content is divisible into unit-sized chunks. Each item o € O is
permanently stored at one or more content custodians in the
network. We denote by H,; the set of items kept by the custodi-
ans within ISP 7. Since the custodians are autonomous entities,
ISP i cannot influence the set H;. Similar to other modeling
works, we adopt the Independent Reference Model(IRM) [15],
[13], [14] for the arrival process of interest messages for the
items in O generated by the local users of the ISPs. Under the
IRM, the probability that the next interest message at ISP @
is for item o is independent of earlier events. An alternative
definition of the IRM is that the inter-arrival time of interest
messages for item o at ISP 7 follows an exponential distribution
with distribution function F?(x) = 1—e~"i®, where w? € R
is the average arrival intensity of interest messages for item o
at ISP i.

Each ISP ¢ € N maintains a network of content caches
within its network, and jointly engineers the eviction policies
of the caches, the routing of interest messages and the routing
of contents via the caches to optimize performance. The set of
items cached by ISP ¢ is described by the set C; € €; = {C C
O : |C| = K}, where K; € N is the maximum number
of items that ISP ¢ can cache. A summary cache in each ISP
keeps track of the configuration of the local caches and of
the content stored in local custodians, it thus embodies the
information about what content is available within ISP i. We
call £; = C; UH; the set of items available within ISP 1.

We denote by «; > 0 the unit cost of retrieving an item
from a local cache, and by 3; the unit cost of retrieving an
item from a peering ISP j € N (7). The traffic on the transit
link is charged by volume with unit cost ;, and we make the
reasonable assumption that ~v; > 8; > «;. A particular case
of interest is when retrieving an item from a peering cache is
not more costly than retrieving it locally, i.e., 5; = a; for all
i € N. We refer to this case as free peering. The model of
free peering is motivated by that, once a peering link has been
established between two ISPs, there is no additional cost for
traffic.

B. Content-peering

We consider that time is divided into time slots, and peering
ISPs synchronously exchange information about the contents

of their summary caches periodically, at the end of every time
slot. Upon receiving an interest message for an item, ISP ¢
consults its summary cache to see if the item is available
locally. If it is, ISP i retrieves the item from its local cache.
Otherwise, before ISP ¢ would forward the interest message to
its transit provider, it tries to leverage its neighbors’ caches by
consulting its most recent copy of the summary caches of its
peering ISPs NV (7). In case a peering ISP ;7 € N'(7) is caching
the item, ISP 7 forwards the request to ISP j and fetches the
content. If not, the interest message is sent to a transit ISP
through a transit link.

Using the above notation, and denoting by C_; the set of
the cache configurations of every ISP other than ISP ¢, we can
express the cost of ISP ¢ to obtain item o € O as

o; ifo€lL;
C{’(CZ,C,Z) :wio 51 lfOGRy\EZ (1)
Yi if o §§ L:l U Ri,
where R; = ;e pr(;) £; is the set of items ISP i can obtain
from its peering ISPs. The total cost can then be expressed as

CilCi,C=i) = Y CP(Ci,Ci )
0O
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which is a function of the cache contents of the peering

ISPs N/ (i).

C. Caching Policies and Cost Minimization

A content item o that is not available locally is obtained
from a peering ISP or through a transit link, and is a candidate
for caching in ISP 4. The cache eviction policy of ISP i
determines if item o should be cached, and if so, which item
p € C; should be evicted to minimize the expected future
cost. There is a plethora of cache eviction policies for this
purpose, such as Least recently used (LRU), Least frequently
used (LFU), LRFU (we refer to [16] for a survey of some
recent algorithms).

We model the decision whether to evict item p € C; based
on the comparison of the cost C; incurred by ISP ¢ when
caching item o in place of item p € C;.

ISP i caches item o ¢ C; in place of item p € C; if

Ci(Ci \ {p} U{o},C_;) < C;i(Ci,C—y), “4)
which is equivalent to
C(2,C-i) — C7({o},Ci) > CF(2,C-i) — CY({p}, C—i)-

Let UY(C_;) £ C{(2,C_;) — C{({q},C—;) be the cost saving
of ISP i for caching item ¢ € O. We consider that, in order
to make a caching decision, ISP ¢ calculates the cost savings
Uo(C_;) and ¥¥(C_;) based on its estimates w{ and W’ of the
arrival intensities wy and w? for the item o to be cached and
for the item p in the cache, respectively. We consider two cases
with respect to the accuracy of the arrival intensity estimates.

Perfect information: Under perfect information Wy
Yo € O.

— 90
= wj



Imperfect information: Under imperfect information we
consider that the probability of misestimation decreases ex-
ponentially with the difference in cost savings, that is, for
Uo(C_;) > ¥P(C_;) we have

P(U(C_;) < TH(C_;)) ox ee v (Vi(€-)=PI(C-0))  (5)
As an example, consider an ISP ¢ and a content allocation C
such that R;(C) = &, then (5) would have the form

0

PV, (C;) < Wﬁ’(c,i)) x ee” v (wihi—ail-wihi-ai)
— e~ v ri—ail(w?—w?)

This method of modeling the misestimation probability is
reasonable for both the LRU and the LFU cache eviction
policies. Under LRU the cache miss rate was shown to be an
exponentially decreasing function of the item popularity [14].
Under a perfect LFU policy, if we denote the interval over
which the request frequencies are calculated by 7, then the
estimate w! follows a Poisson distribution with parameter
w?T. The difference k = w{T — W't of two estimates thus
follows the Skellam distribution [17] with density function

o /2
[k, wiT, whr) = e~ T(wi+w}) <Z;> I‘M(QTq/w;?wf),

where I,(.) is the modified Bessel function of the first kind.
The probability of misestimation is 2;21700 fk,wiT, whr),
which decreases exponentially in w{ — w? for 7 > 0.

III. CONTENT-PEERING UNDER PERFECT INFORMATION

We start the analysis by considering the case of perfect
information, that is, when the cache eviction policies are not
prone to misestimation.

The key question we ask is whether the profit-maximizing
behavior of the individual ISPs would allow the emergence of
an equilibrium allocation of items. If an equilibrium cannot
be reached then content-peering could potentially lead to
increased costs for the peering ISPs, as shown by the following
simple example in which every ISP evicts and fetches the same
items repeatedly over transit connections, thereby increasing
their traffic costs compared to no content-peering.

Example 1. Consider two ISPs and O = {1,2}. Let K1 =
Ky = 1. Without content peering both ISPs cache their most
popular item and forward interest messages to their transit
provider for the least popular item. Their cost is thus C; =
w4yl where wit > wlt. With content peering, if the
initial allocation strategies are C; = Co = {1} and the cost for
retrieving an item from a peer is small enough, i.e. B; 2 o,

~

then the cache contents of the ISPs will evolve indefinitely as

({1}, {1}) — ({2}.{2}) — ({1}, {1}), etc. The average cost
hy 1 hy 1;

for the ISPs is thus C] = j; (W) + % (w" sl ) >

2
i
This simple example illustrates that content peering could
potentially lead to undesired oscillations of the cache contents
of the ISPs, with the consequence of increased traffic costs.
Ideally, for a stationary arrival of interest messages the cache
contents should stabilize in an equilibrium state that satisfies

the ISPs’ interest of traffic cost minimization. Such an allo-
cation corresponds to a pure strategy Nash equilibrium of the
strategic game ' =< N, (¢;);en, (C;)ien >, in which each
ISP ¢ aims to minimize its own cost C; defined in (3).

Definition 1. A cache allocation C* € x;cn€; is an equilib-
rium allocation (pure strategy Nash equilibrium) if no single
ISP can decrease its cost by deviating from it, that is

The strategic game I'" was extensively studied in [18], the
following result follows from [18, Theorem 1],

Theorem 1. In the case of perfect information there is at least
one equilibrium allocation.

In the following we propose three distributed algorithms that
avoid the inefficient updates shown in Example 1 and allow
the system to reach an equilibrium allocation of items from
which no ISP has an interest to deviate.

A. Asynchronous (ASYNC) Algorithm

Example 1 suggests that if the ISPs coordinate so that
they do not update their cache configurations simultaneously,
then they would converge to an allocation from which neither
of them would have an interest to deviate. In the case of
Example 1, such allocations are ({1},{2}) or ({2},{1}). This
intuition provides the rationale for the ASYNC algorithm.

We start the description of the algorithm with the following
definition.

Definition 2. A sequence N; C N, t =1, ... of sets of ISPs
is a complete sequence, if for all time slots ¢t and each ISP
1 € N there exists a time slot ¢’ > ¢ such that ¢ € Ny.

In the ASYNC algorithm V; is a singleton, and at each time
slot ¢, the algorithm allows the unique ISP ¢; € NN; to update
the set of its cached content C;,. ISP i; can decide to insert
in its cache the items that are requested by one or more of
its local users during time slot ¢ but were not cached at the
beginning of the time slot. At the same time, the rest of the
ISPs N\ {i;} are not allowed to update the set of their cached
contents. The pseudocode of the ASYNC algorithm for every
time slot ¢ > 1 is shown in Figure 1.

What we are interested in is whether ISPs following the
ASYNC algorithm would reach an equilibrium allocation from

ASYNC Algorithm

1: INPUT: arbitrary cache allocation C(0)

2: 1+ 1

3: At time slot ¢ do

4 Allow ISP i; € N; to change its cached items
from C;, (t — 1) to C;, (¢)

5: for all j € N\ {i;} do C;(t) =C;(t —1) end

6: At the end of the time slot inform the ISPs j € A (i)
about the new cache contents C;, (t)

7 t+—t+1

end

®

Fi

g. 1. Pseudo-code of the Asynchronous (ASYNC) Algorithm



which none of them would like to deviate. If the ASYNC
algorithm reaches such an allocation, then it terminates, and
no other cache update will take place.

In the following we provide a sufficient condition for
the ASYNC algorithm to reach an equilibrium allocation.
We call the condition efficiency, and the condition concerns
the changes that each ISP ¢ € N can make to its cache
configuration.

Definition 3. Consider the updated cache configuration C;, (t)
of ISP i, immediately after time slot ¢. Define the evicted
set as E;,(t) = C;,(t — 1) \ C;,(t) and the inserted set as
L, (t) = Ci, () \ Ci, (t — 1). C;,(t) is an efficient update if for
any o € I,;,(t) and any p € E;,(t)

C7(C(1) + CL(C(1) < C7(C(t=1)) + C (C(t = 1)) (7)

The requirement of efficiency is rather reasonable. Given
that the ISPs are profit maximizing entities, it is natural to
restrict the changes in the cache configuration to rational
changes, i.e., changes that actually lead to lower cost. The
concept of efficient update is similar to the concept of better
reply in learning in strategic games.

Definition 4. The cache configuration C;, (t) is a better reply
for ISP 4; in the strategic game I if C;, (C(t)) < Cy, (C(t—1)).

It follows from Definition 3 and Definition 4 that any
efficient update is a better reply in the strategic game I,
although the converse is not true, i.e., some evictions and
insertions in a better reply might not be efficient.

We model the evolution of the system state (the set of cache
allocations) under the ASYNC algorithm by a Markov chain
P4, the transition probability P(X;,1 = C’|X; = C) between
states X; = C and Xy, = C’ # C at time slot ¢ is non-
zero if and only if there exists exactly one ISP ¢ € N such
that C] # C; and the update C; to C; by ISP ¢ is an efficient
update. In that case, the probability P(X;1; = C'|X: = C)
is directly proportional to the probability that ISP ¢ receives
the interest messages necessary to update its allocation from
C; to C; during time slot ¢. Given that the distribution F}? of
the inter-arrival times is exponential with parameter wy,

P(Xt+1 = CI‘Xt = C) 0.6 H
OECZ{\Cq‘,

[1 — e_“’gA“} .

Observe that the Markov chain P is not irreducible, as every
equilibrium state is an absorbing state.

Theorem 2. If every ISP performs only efficient updates, the
ASYNC algorithm terminates in an equilibrium allocation with
probability 1.

Proof. We prove the theorem by showing that P4 is an
absorbing Markov chain whose absorbing states are the equi-
librium allocations defined in (6), therefore the probability that
the ASYNC algorithm reaches an equilibrium allocation is 1.

Call @* the set of absorbing states of P“. Observe that
¢* corresponds to the set of pure strategy Nash Equilibria of
the strategic game I' =< N, (&;);en, (Ci)ien > that was
shown to be weakly acyclic under best replies in [18]. Weak
acyclicity implies that from any state C° ¢ €*, there exists

a finite sequence of cache allocations C°,C!,..CK~1 CK,
such that 7) C¥X is an equilibrium allocation and 2) for each
k € {1,2,..,K} there exists exactly one ISP i* € N s.t.
Ch # Ci ' and €l = argming , ce, Cir (Cin, CE 1), Tt is
easy to see that the update from Cf,:l to Cf,c is an efficient
update of ISP i*. In the following we prove that, for each
k € {1,2,.., K}, state C* is accessible from state CK~! in
PA.

Assume w.l.o.g, that at time slot ¢ process P4 is at state
X, = Ck1. Call ¢ the smallest time slot such that ¢ >
t and iy = i*. For each time slot u such that u > t and
u < t', consider the arrival of interest messages for item o
generated by the local users of ISP i,,, with intensity wy . As
every update of the cache allocation of ISP ¢, is triggered by
an interest message sent by a local user, and given that the
distribution F? of the inter-arrival times is exponential with
parameter wy , there is a non-zero probability el that
item o is not requested during time slot u of length A,,.

It follows that, starting from state X; = C*~!, the probability
that process P4 reaches Xy _; = CF~! is at least

t'—1
P(Xpa=C"X=C") > [] | [] e ™2 >0.
u=t

o¢Ci,

Hence, the probability P(C*|C¥~1) to reach state C* from
CF=1 under P4 is at least

t'—1
H H e Win Au H [1 - efwkat] > 0. (8)
u=t | ogCs, oeck \Cl!

The second term of (8) is a lower bound on the probability
that during time slot ¢/, ISP i* receives the interest messages
necessary to update its cache allocation from Cf{l to Cl’i It
follows that P° is an absorbing Markov chain, which proves
the theorem. O

B. Cache-or-Wait (COW) Algorithm

A significant shortcoming of the ASYNC algorithm is that
in slot ¢ it disallows any ISP j € N \ {i;} to perform an
update. As a consequence, one ISP can perform an update on
average every |N| time slots. This restriction would provide
little incentive for ISPs to adhere to the algorithm. In the
following we investigate the effects of relaxing the requirement
of strict coordination by allowing multiple ISPs to perform
efficient updates during the same time slot.

Example 1 suggests that the oscillating behavior of the
cache content is a consequence of the simultaneous cache
updates by neighboring ISPs. The Cache-or-Wait (COW)
algorithm only allows non-neighboring 1SPs to perform si-
multaneous updates. Before we describe the COW algorithm,
let us recall the notion of an independent set.

Definition 5. We call a set Z C N an independent set of the
peering graph G if it does not contain peering ISPs. Formally

Vi,j € ZL,j ¢ N(i).

We denote by J the set of all the independent sets of the
peering graph G. Consider a sequence of time slots ¢ and a



complete sequence of independent sets Z;,Zs, ... € J indexed
by t. At each time slot ¢ we allow every ISP ¢ € Z; to update
the set of its cached content C;. At the same time, ISPs j ¢ Z;
are not allowed to update the set of their cached contents. The
pseudocode of the COW algorithm for every time slot ¢ > 1
is shown in Figure 2.

CoW Algorithm

1: INPUT: arbitrary cache allocation C(0)

2t 1

3: At time slot ¢ do

4: Allow ISPs 7 € 7, to change their cached items
from C;(t — 1) to C;()

5: for all j ¢ 7, do C;(t) =C;(t — 1) end

6: At the end of the time slot inform the ISPs j € N (%)
about the new cache contents C;(t)

7: t+—t+1

8: end

Fig. 2. Pseudo-code of the Cache-or-Wait (COW) Algorithm

Theorem 3. If every ISP performs only efficient updates, then
the COW algorithm terminates in an equilibrium allocation
with probability 1.

Proof. The proof follows the same arguments as the proof of
Theorem 2. We model the evolution of the system state under
the COW algorithm by a Markov chain P"'. P has the same
state space as P4 but differs in terms of transition probabil-
ities. In P, the transition probability between states C and
C’ # C is non-zero if and only if there exists Z € J such that
for every ISP i for which C; # C; we have ¢ € Z, and the
update from C; to C; is an efficient update. In the following
we calculate a lower bound on the probability P(C*|Ck~1)
under PW, for each k € {1,2,.., K} in the finite sequence of
cache allocations C°,C",..CK—1.

Assume that, at time slot ¢, process PY is at state X; =
Ck=1. Call i* the ISP s.t. Ch # Cf[l and ¢’ the smallest
time slot such that ¢ > ¢ and i* € Z;,. The probability that
process P will be at state Xy = CF~! at the beginning
of time slot ¢’ is lower bounded by the probability that no ISP
j € {Zu|u > t,u <t — 1} receives an interest message that
triggers an update, that is

t'—1
P(Xt’—lz Ck_1|Xt: Ck—l) > H H H e—w;’Au > 0.
u=t jeT, OQC;.“

Similarly, we can calculate a lower bound on the probability
of the transition from state C*~! to state C¥ during time slot
' as

P(Xy =CF Xy =C"1) >

[T |11

JET\{i*} [ogC;

[1

oeck \chi!

[1 — e WA | 5.

The first term of the product is a lower bound on the prob-
ability that no ISP j € 7, other than i* receives an interest
message that triggers an update at time slot ¢’. The second
term was introduced in the proof of Theorem 2.

Finally, we can express a lower bound on the probability
P(Ck|CF1) as

P(CFIC* Y > P(Xp_=CFYX=CF1) .
P(Xy =CF|Xy_1 =CF 1) >0.
This proves the theorem. O

The following corollary is a consequence of Theorem 3

Corollary 1. If every ISP performs efficient updates, then the
number of time slots needed by the COW algorithm to reach
an equilibrium allocation is finite with probability 1, and thus
the number of efficient updates is finite with probability 1.

In the following we prove a stronger result on the number
of efficient updates required to reach an equilibrium allocation
in the free peering case. Recall that, in the free peering case,
a; = f; forall i € N.

Theorem 4. In the free peering case, if every ISP performs
efficient updates then the COW algorithm terminates in an
equilibrium allocation after a finite number of efficient up-
dates.

Proof. We will prove the theorem by showing that there exists
a global function ¥ : x;(€;) — R that strictly increases at
every efficient update made by any ISP 7 following the COW
algorithm. We define W(C) = >,y ¥i(C), where W;(C) is
the cost saving of ISP ¢ for allocation C = (C;,C—;),

vi(C)= Y wC) = Y (C(2,C-i) — C2({o},C-)).

0€eC; 0€C;

Without loss of generality, consider the efficient update C;(t)
made by ISP i € Z, at time slot ¢. In the following we show
that \I/J(Cz(t),cfz(t — 1)) > \IIJ(C(t — ].)) for all j € N.
Observe that it follows directly from the definition of ¥;(C)
that for ISP ¢

A) Consider k ¢ N (7). Observe that the cost of ISP k is not
a function of C;:

o if k ¢ Z, ISP k does not make any efficient update at
time slot ¢, thus Wy (C;(t),C_;(t — 1)) = ¥, (C(t — 1));
o if k €Z, k# i, Uy is not influenced by C;.
B) Consider j € MN(i). Consider o € I;(t) and p €
E;(t). From the cost function defined in (1) it follows that
CP(t+1) > CP?(t). Substituting it in the definition of efficient
improvement step in (7), it follows that C?(t) > C?(t+1) =
o ¢ ’R,,L(t) = 0 ¢ Cj(t), thus \I’](Cz(t),cfl(t — 1)) is not
affected by item o.
Consider now item p:
o If p ¢ C;(t), then ¥;(C;(t),C_;(t — 1)) is not affected
by item p.
. pr € Cj(t), then \Ilj(Cl(t),C,Z(t — 1)) > \I/](C(t — 1))
(the inequality is strict if p ¢ {H; UR;(t+1)}).
Therefore, the function ¥ increases strictly upon every effi-
cient update. Since x;(¢;) is a finite set, ¥ cannot increase
indefinitely and the COW algorithm must terminate in an equi-
librium allocation after a finite number of efficient updates.



Note that, in game theoretical terminology, the function ¥
is a generalized ordinal potential function for the strategic
game I'. [

Thus, a network of ISPs, in which only non-peering
ISPs perform efficient updates during the same time slot,
eventually reaches an equilibrium allocation. Since the number
of independent sets equals at least x(G), the chromatic number
of the ISP peering graph, an ISP can perform an update on
average up to every x(G)" time slots. In the worst case, for
complete peering graphs, for which x(G) = |N|, the COW
algorithm would be equivalent to the ASYNC algorithm, hence
the ISPs would have little incentive to adhere to the COW
algorithm.

C. Cache-no-Wait (CNW) Algorithm

In the following we investigate what happens if we allow
every ISP 7 € N in the system to update the set of its cached
content C; during every time slot. The pseudo-code of the
CNW algorithm for time slots ¢ > 0 is shown in Figure 3.

CNW Algorithm

1: INPUT: arbitrary cache allocation C(0)

2t 1

3: At time slot ¢ do

4: Every ISP 7 € N is allowed to change its cached items

from C;(t — 1) to C;(t)

5: At the end of the time slot ISP ¢ informs
the ISPs j € N/ (i) about the new cache contents C;(t)
t+t+1

end

=2

Fig. 3. Pseudo-code of the Cache-no-Wait (CNW) Algorithm

Using the same arguments as in the proofs of Theorems 2
and 3 we can prove the following.

Theorem 5. If every ISP performs only efficient updates,
CNW terminates in an equilibrium allocation with probabil-
ity 1.

Proof. Call PN the Markov chain that models the evolution
of the system state under the CNW algorithm. In PV the
transition probability between states C and C’ # C is non-
zero if and only if, for every i € N such that C, # C;, the
update C; to C; by ISP i is an efficient update. The probability
P(C*|C*~1) under PV, for each k € {1,2,.., K} is at least

[ I e

ol JEN~{i} ofC;

where IF = CF\ CF™'. It follows that P° is an absorbing
Markov chain, which proves the theorem. O

We have thus far shown that under perfect information
content-level peering will eventually lead to stable cache
allocations, independently of whether the ISPs coordinate. In
the case of free peering we could provide a stronger result, as
ISPs that coordinate are guaranteed to reach a stable allocation
after a finite number of updates. We will later, in Section V,
investigate using simulations how the convergence speeds

differ depending on the frequency of coordination. We now
turn to the case of imperfect information.

IV. THE CASE OF IMPERFECT INFORMATION

Until now we assumed that following a cache miss, when
ISP 7 has to decide whether to cache item o it has a perfect
estimate of the arrival intensity w{ of every item, and thus it
is always able to evict one of the items that yield the lowest
cost saving. In the following we consider that the estimation
of the item popularities is imperfect. To ease the analysis we
consider the ASYNC algorithm throughout the section as the
set of equilibria under the ASYNC algorithm coincides with
those under the COW and CNW algorithms.

Under imperfect information the system can not settle in
any single equilibrium or stable allocation, unlike in the case
of perfect information. Nevertheless, the cache allocations that
are most likely to occur are not arbitrary, and in the following
we show that in some cases, it is possible to characterize them.

Call P¢ the Markov process that models the system under
imperfect information, where ¢ = e~ v is a scalar parameter
that indicates the overall level of noise. Let us recall the
following definition from [19].

Definition 6. A Markov process P°¢ is a regular perturbation
of the Markov process P4 if ¢ takes on all values in some
interval (0, a], and the following conditions hold for all C,C’ €
Xien @

1) P¢ is aperiodic and irreducible for all € € (0, al,

2) lim. s P o = Péle,

3) P¢cr > 0 for some ¢ implies 3r(C,C") > 0 such that

0 < lim,_,e "€ . PE o < o0.

We can now prove the following.

Theorem 6. The Markov process P¢ is a regular perturbation
of the Markov process P4,

Proof. 1) It follows from (5) that under imperfect information
the probability that item o will be evicted and item p inserted
even though ¥¢ > \I/f is non-zero, therefore for every € > 0,
Pe is irreducible. Furthermore, it follows from the distribution
F? of the inter-arrival times that P(X;11 = C|X; =C) > 0,
VC € x;(€;), therefore P¢ is aperiodic.

2) From (5), for every C and C’, P® converges to P4 at an
exponential rate, lim. o P§ o = Pgle.

3) For all C,C’ € x;en@;, if P§ . > 0 then 3i € N such that
C; # C!. We partition the inserted set I = C; \ C; in two sets,
R and W, such that R is the set of content items that satisfy
condition (7), and W is the set of objects mistakenly inserted.
Call f an order of arrivals of the interest messages for the
items in I, i.e. f is an ordering of the items in I. We define
Ly as the set of items evicted upon the insertion of the items
in W. It follows from (5) that the probability P*(E; — W|f)
of inserting the items in W in place of the items in E, given
a particular order f of arrivals is

P(E; — W) = Wle o (Toew ¥(€-0-Tyen, W)
©)



which does not depend on the order of eviction of the objects
in Ey. We can then express F¢ o, in the form

Pie o [] [1 - e*w?ﬂ N P(f)P(Ef — WIf). (10)
f

o€l

Observe that the probability P(f) that the interest messages
arrive in a particular order f is independent from the level
of noise ¢. Therefore, as ¢ — 0, (10) is dominated by the
term P°(E; — W|f) with the largest exponent. By defining

r(C,C") 2 ming (e U2C—i) = Xpem, WC-)) > 0,

we have .
0 < lim ev"(CC) . P ., < oo,
e— ’
which proves the theorem. O

We refer to 7(C,C’) > 0 as the resistance of the transition
from allocation C to C’. The resistance is 0 if there is a
transition in the unperturbed Markov process (i.e., W = @).
Since P¢ is an irreducible aperiodic finite Markov process, it
has a unique stationary distribution for € > 0. We now recall
a result from Young [19].

Lemma 1 (Young [19]). Let P® be a regular perturbed
Markov process, and let u® be the unique stationary distri-
bution of P° for each ¢ > 0. Then lim._,o u° = p* exists,
and p? is a stationary distribution of PA. The domain of u* is
a non-empty subset of the absorbing states of the unperturbed
Markov process.

By Lemma 1 there is thus a stationary distribution ;# of
the unperturbed process such that, for small €, the system will
likely be in a state in the domain of . As the support of the
stationary distribution 14 is a subset of the recurrent commu-
nication classes of P4, for small ¢ the perturbed process P°
is likely to be in a particular subset of the equilibrium states.
In the rest of the section we characterize the cache allocations
that correspond to the equilibrium states that are most likely
to be visited, for two scenarios.

A. The free peering case

We start by considering the free peering case, i.e. o; = 3,
for all ¢ € N. Observe that, at every ISP ¢ € N, the cost
saving for every item o € R;(C) is U?(C_;) = wf [B; — o) =
0. In other words, in the free peering case, no ISP ¢ will
ever insert any item o that is already cached by any of its
peering ISPs N (7).

Consider a set of N = {1,...,|N|} ISPs, and items O =
{1,...,]0]}. Let p;(0) be the rank in terms of popularity of
item o in ISP ¢, and let 7; be the set of the K; items such
that p;(0) < K,. For a cache allocation C denote by h(C)
the number of items o such that o is cached by an ISP ¢ but
pi(o) > K;.

We consider that the items with highest arrival intensity are
the same among the different ISPs, and we denote them by the
set 7 = J; ;. We start by investigating the cache allocations
that are most likely to occur in the case of disjoint interests.
In this case the K; items with highest arrival intensity of the
ISPs form disjoint sets, namely 7;N7; = @, forall i # j € V.
We will first show the following

Fig. 4. State transition diagram of the unperturbed Markov process (solid
lines). (o,p) and (p,o0) are absorbing states in the unperturbed Markov
process, between the two equilibria. but only the equilibrium (o, p) is the
domain of p4.

Lemma 2. Let C* be the allocation in which every ISP caches
its most popular items, namely C? = 7T;. For any absorbing
state C' such that h(C') > 2, there exists an absorbing state
C" such that h(C") =2 and r(C*,C") < r(C*,(’).

Proof. Let S be the path with least resistance from C* to C’.
Observe that, since C = T;, at least h(C’) mistakes are needed
to reach C’. Denote by i the first ISP that makes a mistake
in S, and by o and ¢ the mistakenly evicted and inserted items,
respectively. Since S is the path with least resistance, there
exists j € A(7) that makes at least one mistake. Consider
the first mistake of ISP j and call p and r the evicted and
inserted item, respectively. Observe that o,p € T; U T;. We
will now show that these two mistakes are enough to reach the
absorbing state C" defined as C} = C; ~ {p} U{o}, C{' = C;' \
{o}U{p}, C;l =C; Vh e N~{i,j}, and hence r(C*,C") <
r(C*,C’). Let us start from C* and consider the state reached
after committing the two mistakes. Observe that, since g ¢
T: UT;, thus p;(p) < pi(q). Furthermore we know that there
is no ISP h # j, such that p € C;. Hence ISP ¢ can evict
q and insert p without making a mistake. If » = o then we
reached C”. If r # o then, following the same argument, ISP j
can insert o and evict r without making a mistake, reaching
c". O

We will now use Lemma 2 to prove the following

Proposition 7. If T;NT; = @ for all i # j € N, then
lim.,o P(C(t) =C*) = 1.

Proof. As a consequence of Lemma 2 it is sufficient to show
that for every absorbing state C” such that h(C”) = 2, it holds
that »(C*,C"”) > r(C"”,C*). For brevity define C" as in the
proof of Lemma 2. Assume, w.l.o.g., that in the path with
least resistance from C* to C”, ISP ¢ makes a mistake before
ISP j by inserting item ¢ ¢ 7; U 7; in place of item o . Then
r(C*,C") > wy — w. Observe now that, since ¢ ¢ 7; U Tj,
from the absorbing state C” the mistake of ISP ¢ of evicting
item p and inserting ¢, with resistance w! — w!, is enough
to reach C*. Hence r(C”,C*) < w? — w!. This proves the
Proposition. U

The following illustrates the proof on a simple example.



Example 2. Consider a complete graph and K; = 1. The
|N| most popular items are the same in every ISP, but item o
has a distinct rank at every ISP. In every equilibrium the |N|
most popular items are cached, one at every ISP, and thus
there are |N|! equilibria. Fig 4 shows the state transition
diagram of the unperturbed Markov process (with solid lines)
for the case of two ISPs, |N| = 2. The figure only shows the
transitions between states. X and Y stand for an arbitrary
item other than o and p, and the states (p,Y) and (X,p)
((0,Y) and (X, 0)) represent all states in which item p (item o)
is cached by ISP 1 and ISP 2, respectively. The dashed lines
show transitions due to mistakes that are needed to move
from one equilibrium to a state from which both equilibria
are reachable (there is a positive probability of reaching
it) in the unperturbed process. These transitions only exist
in the perturbed Markov process. With perfect information
there are two equilibrium allocations, which are the absorbing
states (0,p) and (p,o) of the unperturbed process. The two
equilibrium allocations are, however, not equally likely to be
visited by the perturbed process.

Observe that in the unperturbed process, equilibrium (o, p)
is reachable from every allocation except from equilibrium
(p, 0). Therefore, in the perturbed process one mistake suffices
to leave equilibrium (p,0) and to enter a transient state
of the unperturbed process from which both equilibria are
reachable in the unperturbed process. It takes, however, two
mistakes in close succession to leave equilibrium (o, p) and
to enter a transient state of the unperturbed process from
which both equilibria are reachable in the unperturbed process.
As the level of noise ¢ decreases, the probability of two
successive mistakes decreases exponentially faster than that
of a single mistake, and thus the perturbed process will be
almost exclusively in state (o, p), thus C* = (o, p).

A similar reasoning can be used to get insight into the
evolution of the system state in the case that the ranking of
the items is the same among all ISPs, namely 7; = 7; for all
1,7 € N. As an example, we show the following.

Proposition 8. If the arrival intensity w{ for an item o for
which p;(0) < K; increases at ISP i, then lim._,o P(o €
Ci(t)) increases.

Proof. Consider the state transition diagram of the perturbed
Markov process P¢. For a state C for which o € C;, the transi-
tion probability that corresponds to ISP ¢ mistakenly evicting
o decreases. For a state C for which o ¢ C;, the transition
probability to the states C’ for which o € C! increases, and
the transition probability to other states decreases. Reconciling
these changes with the global balance equation for the set of
states {C|o € C;} proves the proposition. O

The impact of the number of peers of an ISP and that of
the amount of storage K; can be analyzed similarly. We omit
the analysis for brevity, and turn to the general case instead.

B. The general case

In the following we consider the general case, when ~; >
B; > «;. We show that the results of the previous section may

not hold and show that Proposition 7 does not hold in general.
We start by considering a scenario similar to the one described
in Example 2, when the K; items with highest arrival intensity
of the ISPs form disjoint sets.

Example 3. Consider a complete peering graph of 4 ISPs and
K; = 1VYi € N. Let the most popular items of ISPs 1, 2, 3, and
4 be a, o, p and b, respectively. Thus, the allocation in which
every ISP caches its most popular item is C* = (a,o0,p,b).
Furthermore, let us assume that the following inequalities hold

wi [B1 — a1] > w3 [y1 —ai], Vg € O\ {a}, (1D
wh [y2 — ag] > wy [y2 — ag] > w3 [Ba — an], (12)
ws [z — ag] > w; [z — as] > wj [B5 — as], (13)
wh [Bs — ] > wl [ya — au], Vg € O\ {b}. (14)

Observe that (11)-(14) imply that the allocation C" =
(a,p,0,b) is an absorbing state, and h(C"") = 2. Furthermore,
C* and C" are the only absorbing states.

We are ready to prove the following

Proposition 9. If T, NT; = @ for all i # j € N, then there
might exist two or more stochastically stable absorbing states,
ie lim.,oP(C(t)=C*) < 1.

Proof. We use Example 3 to prove the proposition. In particu-
lar, we show that for some values of w{ and wf, the absorbing
states C* and C” have the same stochastic potential.
Consider the following two transitions: ISP 1 inserts item o in
place of item a, and ISP 4 inserts item p in place of item b.
We refer to the two transitions as (TI) and (T2), respectively.
We start by showing that there exists a path from C* to C”
in which the transitions (T1) and (T2) are the only transitions
with positive resistance. Starting from C*, after transitions (T1)
and (T2), the process reaches allocation (o, 0, p, p). It follows
from (11) and (14) that reaching C”” does not require additional
mistakes

(07 T,p,p) ? (O,T, S7p> (a7rasvp)

(0,0,p,p) > -
- (a,7,5,0) > (a,p,5,0) 2 (a,p, 0,b).
Similarly, there exists a path from C” to C* in which the
transitions (T1) and (T2) are the only transitions with positive
resistance. Starting from C”, after transitions (T1) and (T2),
the process reaches allocation (o,p,0,p) and then reaches
allocation C* with no additional mistakes
(07p7 07p) ? (07 T, Oap) ? (07 T, S7p) ? (a, T, Sap)
- (a,r,s,b) - (a,0,8,b) e (a,0,p,b).

Since the peering graph is complete, R1(C*) = Ry (C") =
{0,p,b} and R4(C*) = R4(C") = {0, p, a}. It follows that,
starting from C* or C”, the resistances of transitions (T1) and
(T2) are the same,

wi [y1 — o] = ws [B1 — 1] + w [ys — o] — wh [Bs — oug] .

As the expression above does not depend on the average arrival
intensities of interest messages at ISPs 2 and 3, there exist
w{ and w} such that the two paths described above are the
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Fig. 5. Average number of iterations needed to reach an equilibrium
allocation as a function of the time slot duration A for three different peering
graphs and algorithms COW and CNW. Results for 8; = 1.5.

paths with least resistance from C* to C" and from C” to C*,
respectively. It follows that the allocations C* and C” have the
same stochastic potential, that is r(C*,C") = r(C"”,C*). This
proves the proposition. O

It follows from Proposition 9 that if peering is not free, two
or more cache allocations might be almost equally likely to
emerge, even when the ISPs have disjoint interest.

V. NUMERICAL RESULTS

In the following we show simulation results to illustrate the
analytical results of Sections III and IV for COW and CNW.

A. Perfect Information

Figures 5 and 6 show the average number of iterations and

the average time the algorithms COW and CNW need to termi-
nate as a function of the time slot duration A, respectively. We
report results for three different peering graphs. The CAIDA
graph is based on the Internet AS-level peering topology in
the CAIDA dataset [20]. The dataset contains 36878 ASes and
103485 transit and peering links between ASes as identified
in [21]. The CAIDA graph is the largest connected component
of peering ASes in the data set, and consists of 616 ISPs
with measured average node degree of 9.66. The Erdés-Rényi
(ER) and Barabdsi-Albert (BA) random graphs have the same
number of vertexes and the same average node degree as the
CAIDA graph. For the COW algorithm, we used the Welsh-
Powell algorithm to find a coloring [22] of the peering graph.
We used a; = 1, 8; = 1.5, 73 = 10 and cache capacity
K; =10 at every ISP.
Each ISP receives interest messages for |O| = 3000 items.
The arrival intensities wy follow Zipf’s law with exponent
1, and for all i € N it holds >  .,w? = 1. Each data
point in the figures is the average of the results obtained from
100 simulations, and the error bars show the 95% confidence
intervals. We omit the confidence intervals when they are
within 5% of the averages.

Figure 5 shows that the number of iterations the COW algo-
rithm needs to reach an equilibrium allocation monotonically
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Fig. 6. Average time needed to terminate as a function of the time slot
duration A for three different peering graphs and algorithms COW and
CNW. Results for 8; = 1.5.

decreases with the time slot length. The longer the time slots,
the more interest messages the ISPs receive within a time slot.
This enables the ISPs to insert more highly popular objects per
iteration. Furthermore, since only ISPs in an independent set
can make updates at each iteration, simultaneous cache updates
like the ones shown in Example 1 cannot occur. Consistently,
the total time needed for the COW algorithm to converge,
shown in Figure 6, remains constant independent of the slot
length A.

The CNW algorithm exhibits significantly different behavior
for long time slots, as the number of iterations needed to
terminate increases compared to the COW algorithm. This
happens because using the CNW algorithm a higher number of
arrivals per time slot leads to a higher number of simultaneous
updates, which disturb convergence. Figure 5 shows that si-
multaneous updates are most likely to occur in ER graphs. In
BA graphs simultaneous updates would occur mainly among
the few nodes with high degree, and since most ISPs have low
node degree, the CNW algorithm would converge faster than
on ER graphs. For the same reason, for small time slots when
simultaneous updates are unlikely to occur, both the COW and
CNW algorithms perform best on the ER random graph. From
Figure 6 we notice that, as expected, the time for the CNW
algorithm to terminate starts to increase with high values of the
slot length. This increase is fast for the ER graph due to the
higher occurrence of simultaneous updates, as we discussed
above.

Figure 7 shows the number of items inserted in cache (po-
tentially several times) for the two algorithms until termination
divided by the minimum number of items needed to be inserted
to reach the same equilibrium. We refer to this quantity as the
inefficiency of updates. While the inefficiency of the CoOW
algorithm decreases slowly with the time slot length, that of
the CNW algorithm shows a fast increase for high values of A,
in particular for the ER and the BA graphs, which can be
attributed to the simultaneous updates under CNW.

An important question is how the number of simultaneous
updates that occur under CNW is affected by the peering
cost ;. Figure 8 shows the number of iterations needed to
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reach an equilibrium allocation under the CNW algorithm
as a function of the time slot duration A. In the figure we
show the results for peering costs 8; € {1.0,1.5,2.0}. The
results for 5; = 1.5 are the same as shown in Figure 5.
The figure shows that the number of iterations decays as a
power of the time slot duration, as long as convergence is not
disturbed by simultaneous updates. At the same time, once
simultaneous updates become frequent, increasing the time slot
duration leads to a fast increase of the number of iterations.
In the free peering case, ie. 5; = 1(= «;), the number of
iterations needed to reach an equilibrium allocation increases
for significantly smaller time slot durations compared to the
Bi; = 1.5 and B; = 2.0 cases. This happens because any item
o € C; such that o € C; and j € N(i) can potentially be
evicted by both ISPs i and j, i.e. ¥7(C—;) = ¥5(C_;) = 0.
This is not the case when «; < f(;, as higher peering
costs correspond to higher cost savings for the items that are
available at peering ISPs. Therefore, higher peering costs cause
a lower number of simultaneous updates for equal time slot
duration.

These results show that although CNW would be more
appealing as it allows ISPs to update their cache contents
all the time, COW might be necessary when the information
exchange happens infrequently or when the unit cost of
peering traffic is close to the unit cost of retrieving an item
from a local cache.

B. Imperfect Information

In the following we show results for the case when the
estimation of the items’ arrival intensities is imperfect under
free peering. We consider that every ISP estimates the arrival
intensities of the items by counting the number of arrivals
under a period of 7 seconds. As in the case of imperfect
information the COW algorithm would never terminate, we
collected the statistics on the permanence of the various items
in the cache of each ISP over 10° time slots. We considered
50 ISPs and a time slot of 70 seconds, which in the case of
perfect information would guarantee a fast termination of the
CoW algorithm. We first validate Proposition 7 for the case
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Fig. 8. Average number of iterations needed to reach an equilibrium

allocation as a function of the time slot duration A for algorithm CNW.
Results for three different peering graphs and peering costs.

of K; = 1, hence we consider that the item with the highest
arrival intensity is different at every ISP.

Figure 9 shows the average relative permanence in the ISPs’
caches of the three items with highest arrival intensity, as a
function of the estimation interval 7, for three random peering
graphs. The results show that the probability of caching
the item with highest arrival intensity approaches 1 when 7
increases, and thus validate Proposition 7. Furthermore we
observe that the probability of caching items with lower arrival
intensities decreases exponentially with 7.

In the next scenario we start from the setting described in
Proposition 8, where the ranking of the items’ intensities is
the same among all ISPs. We scale the arrival intensity w{
of every item o at ISP 1 by the same factor, while keeping
the intensities at the other ISPs constant. Figure 10 shows
the average relative permanence in ISP 1’s cache of the three
items with highest arrival intensities as a function of wj. The
results confirm that a higher w; leads to a higher relative
permanence in the ISP’s cache of the items with highest arrival
intensity. Concerning the influence of the peering graph, the
figure shows a constantly lower permanence of the best items
for the BA graph with higher average node degree. This is due
to that with a higher number of peering links the probability
that the best items are in a peering ISP’s cache gets higher.

VI. RELATED WORK

There is a large variety of cache eviction policies from
Least recently used (LRU) to the recent Adaptive replacement
cache [16]. Most analytical work on the performance of
cache eviction policies for stand-alone caches focused on
the LRU policy [23], [24], [14]. An iterative algorithm for
calculating the cache hit rate was proposed in [23], closed-
form asymptotic results were provided for particular popu-
larity distributions in [24] and recently in [14]. These works
considered stand-alone caches.

The cache hit rate for cache hierarchies was investigated in
the context of web caches and content-centric networks [25],
[26], [27], [28]. General topologies were considered for
content-centric networks [4], [13], [6]. An iterative algorithm
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in the ISPs’ caches, as a function of the intensity estimation interval 7, for
three different random peering graphs.

to approximate the cache miss rate in a network of caches
was proposed in [13]. The authors in [4] considered various
network topology-aware policies to improve the overall cache
hit rate in a network of caches. In [6], [7] the authors use
probabilistic caching to increase the cache hit rate and the
fairness among content flows in a network of caches. The
authors in [29] analyzed the impact of the initial system state
on the selection of the system’s steady-state. These works
consider that the caches route requests irrespective of the
associated traffic costs. [30] shows that considering the traffic
costs of a network operator leads to cache allocations that are
suboptimal in terms of hit rate. Common to the aforementioned
works is the assumption of a single network operator with a
single performance objective. In our work we account for the
profit maximizing behavior of individual network operators
and model the resulting interaction between caches.

Replication for content delivery in a hierarchy of caches
was considered recently in [31], [32]. The authors in [31]
considered a centralized algorithm for content placement,
while distributed algorithms were analyzed in [32]. A game
theoretical analysis of distributed content replication was pro-
vided in [33], [34], [18], [35]. The authors in [33] showed
that the Price of Anarchy on a complete graph is unbounded
and it depends on the unit costs to retrieve content items.
[34] showed that, the social optimum may not be a Nash
equilibrium even on a complete graph topology. In [18], [35]
the authors investigated the existence of Nash equilibria and
the convergence properties for the case of replication on
an arbitrary graph topology, while [36] showed that a Nash
equilibrium may not exist for certain graph topologies and
access costs, and proposed a distributed algorithm for finding
ex-post individually rational content allocations. Opposed to
replication, we consider an arbitrary topology of caches, and
we consider that caches do not follow an algorithm engineered
for good global performance but they follow their individual
interests.

Closest to this work is [37], which considered a network of
selfish caches, including the effects of evictions, and provided
a game-theoretical analysis of the resulting cache allocations.
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Fig. 10. Relative permanence of the three items with highest arrival intensity
in ISP 1’s cache, as a function of the scaling factor at ISP 1, for two Barabasi-
Albert peering graphs with different average node degree.

This paper extends the results in [37] by relaxing the assump-
tion of free content-peering and considering the more general
case when retreiving content from within the ISP is not more
costly than retrieving it from peering ISPs.

VII. CONCLUSION

We proposed a model of the interactions between the caches
managed by peering ASes in a content-centric network. We
used the model to investigate how the level of coordination
influences the ability of peering ASs to achieve stable and
efficient cache allocations in the case of content-level peering.
We showed that irrespective of whether the ISPs coordinate,
the cache allocations of the ISPs engaged in content-level
peering will reach a stable state. If fast convergence to a stable
allocation is important too then coordination is needed to avoid
simultaneous cache evictions by peering ISPs. Furthermore,
we gave insight into the structure of the most likely cache
allocations for the case when the content popularity estimates
are inaccurate. We showed that, in the general case, various
cache allocations may be almost equally likely to emerge.
However, if peering traffic is free, content-peering is likely
to lead to the cache allocation that is most efficient.
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