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Distributed Caching Algorithms for
Interconnected Operator CDNs

Valentino Pacifici and György Dán

Abstract—Fixed and mobile network operators increasingly
deploy managed CDNs with the objective of reducing the traffic
on their transit links and to improve their customers’ quality
of experience. As network operator managed CDNs (nCDNs)
become commonplace, operators will likely provide common
interfaces to interconnect their nCDNs for mutual benefit, as they
do with peering today. In this paper we consider the problem of
using distributed algorithms for computing a cache allocation for
nCDNs. We show that if every ISP aims to minimize its cost and
bilateral payments are not allowed then it may be impossible to
compute a cache allocation. For the case when bilateral payments
are possible, we propose two distributed algorithms, the aggregate
value compensation (AC) and the object value compensation (OC)
algorithms, which differ in terms of the level of parallelism they
allow and in terms of the amount of information exchanged
between nCDNs. We prove that the algorithms converge, and
we propose a scheme to ensure ex-post individual rationality.
Simulations performed on a real AS-level network topology and
synthetic topologies show that the algorithms have geometric rate
of convergence, and scale well with the graphs’ density and the
nCDN capacity.

Index Terms—operator managed CDNs, cooperative caching,
content allocation, game theory.

I. INTRODUCTION

Real-time and on-demand video are consumed by a large
and ever increasing fraction of mobile and fixed Internet users.
To fuel this growth, major over-the-top content providers, such
as Netflix, Hulu, etc., try to maintain customer satisfaction
through increasing Quality of Experience (QoE): 3D content
has become commonplace, and super HD content has become
available recently [1]. To face the new challenges caused by
increasing demands for digital content and in order to maintain
a competitive QoE for their users, most content providers
outsource content delivery to commercial content distribution
networks (CDNs). For content providers, CDNs offer relatively
low delivery costs compared to investing in an own infrastruc-
ture, they provide dynamically scaling bandwidth to satisfy
sudden surges of demand, and through multiple surrogate
servers they provide better quality of experience (QoE) for
customers than a system based on a single content delivery
server [2], [3].

The increasing demand and the improved QoE result in
increased bitrates, which stresses network operators’ networks,
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yet in the traditional CDN-based content distribution model
network operators are not part of the revenue chain. At the
same time, good QoE may also require control of the network
resources between the CDN surrogate and the customers’
premises and needs content to be placed closer to the cus-
tomers.

Many network providers have started to deploy their own
CDNs for the above reasons, and recent industry efforts aim to
interconnect these network operator managed CDNs (nCDNs),
potentially also with traditional commercial CDNs [3], [4].
For content providers, nCDN interconnection provides a trans-
parent solution for bringing content closer to the customers
than any single CDN would be able to provide. For network
providers, nCDN interconnection can improve CDN availabil-
ity and customer QoE.

As nCDNs often prefetch content based on predicted de-
mands during periods of low demands (e.g., NetFlix Open
Connect), successful nCDN interconnection requires that given
predicted demands, the nCDNs be able to agree on a content
allocation that serves all service providers’ interests. In lack
of a central authority the agreement has to be based on a dis-
tributed algorithm, the algorithm should not reveal confidential
information, and the resulting allocation should be such that
no nCDN fares worse due to interconnection, as otherwise
nCDNs would have no incentive to interconnect.

In this paper we address the design of distributed algo-
rithms for content allocation among interconnected nCDNs.
We propose a model of CDN interconnection assuming that
CDNs aim to maximize the QoE of their customers and we
show that content allocations that maximize the aggregate QoE
are infeasible to compute and to implement. We show that
self-enforcing content allocations may not exist if payments
are not allowed among nCDNs. We propose two distributed
algorithms that use bilateral compensations to guarantee con-
vergence to a content allocation and we propose an opt-out
scheme, which combined with the two algorithms ensures
that the resulting allocations are individually rational. Thus,
participation according to the proposed algorithms is ex-post
individually rational for all nCDNs. We use simulations on a
measured Internet AS-level topology to evaluate the proposed
algorithms, and we show that faster convergence can be
achieved if nCDNs reveal more private information, such as
content demands. To the best of our knowledge ours is the first
work to consider the design of ex-post individually rational
distributed algorithms for CDN interconnection.

The rest of the paper is organized as follows. In Section II
we describe the system model and address the complexity of
computing an optimal content allocation. Section III shows
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that a satisfactory content allocation may not exist without
payments. In Section IV we design two distributed algorithms
and we prove their convergence. Section V evaluates the
proposed algorithms in terms of convergence rate and achieved
cost savings. In Section VI we review the related work.
Section VII concludes the paper.

II. SYSTEM MODEL

We consider a set of autonomous service providers N .
Each service provider manages a CDN; we refer to the CDN
managed by service provider i ∈ N as network CDN
(nCDN) i. The customers of service provider i generate
requests for content items from the set O of all content items.
We make the common assumption that content is divisible
in same-sized chunks, thus every item o ∈ O has the same
size [5], [6]. The customers of service provider i generate
requests for content item o at an average rate of woi ∈ R+.
We denote the set of content items stored by nCDN i by the
set Ai ∈ Ai = {A ⊂ O : |A| = Ki}, where Ki ∈ N+

is the maximum number of items that nCDN i can store. In
what follows, we use the terms nCDN and service provider
interchangeably.

We model the relationships between the nCDNs by an
undirected graph G(N,E), called the interconnection graph.
There is an edge between nCDN i and nCDN j iff they are
connected, and we use N (i) = {j|(i, j) ∈ E}. We denote
by A−i = (Aj)j∈N\{i} the content item allocations of every
nCDN other than nCDN i and by Ri(A−i) the set of items
that can be retrieved from the nCDNs connected to nCDN i,
Ri(A−i) ,

⋃
j∈N (i)Aj .

We consider that each service provider aims to improve the
quality of experience of its customers through decreasing the
average access latency to content items. We denote by αi the
unit cost (i.e., access latency) of service provider i for serving
an item stored in nCDN i, i.e., locally. If an item is not stored
locally at nCDN i, it can be retrieved from one of the nCDNs
N (i) ⊂ N connected to nCDN i. We denote by βji the unit
cost for serving an item from a connected nCDN j ∈ N (i).
As βji is a model of the access latency, it depends on the
infrastructure connecting nCDN i and nCDN j. If item o is
available neither locally nor at a connected nCDN, it needs to
be retrieved from the origin content provider in the network.
We denote by γi the unit cost of retrieving an item from the
origin content provider. We make the reasonable assumption
that it is faster to access an item stored in the local nCDN
than to retrieve it from a connected nCDN, and it is faster to
retrieve an item stored in a connected nCDN than retrieving it
from the content provider, i.e., αi < βji < γi. This assumption
is not restrictive, as if βji ≥ γi, we can remove (i, j) from E.

A. Average Access Latency Cost

We express the cost in terms of average access latency
incurred by service provider i in allocation A as

Ci(A) =
∑
o∈O

Coi (Ai, A−i), (1)

where Coi (Ai, A−i) is the cost for accessing item o ∈ O,

Coi (Ai, A−i) = woi


αi if o ∈ Ai
min
j∈N (i)

{βji |o ∈ Aj} if o ∈ Ri(A−i)\Ai
γi otherwise.

(2)
Observe that (i) the content allocations of the nCDNs in
N (i) influence the cost of nCDN i through the set A−i,
and (ii) if item o is stored at several connected nCDNs then
nCDN i retrieves it from the one with lowest unit cost. The
cost incurred by service provider i for serving item o can be
rewritten as

Coi (Ai, A−i) = Coi (∅, A−i)− (Coi (∅, A−i)− Coi (Ai, A−i))

= Coi (∅, A−i)− CSoi (Ai, A−i),

where CSoi (Ai, A−i) is the cost saving that service provider i
achieves by allocating item o given the content allocation at
the nCDNs connected to nCDN i. Since the cost Coi (∅, A−i)
is independent of the allocation Ai of nCDN i, finding the
minimum cost is equivalent to finding the maximum aggre-
gated cost saving

arg min
Ai

Ci(Ai, A−i) = arg min
Ai

∑
o

Coi (Ai, A−i)

= arg max
Ai

∑
o

CSoi (Ai, A−i).

If nCDN i allocates item o, i.e., o ∈ Ai, then the cost saving
can be rewritten as

CSoi ({o}, A−i)=

{
woi [γi − αi] if o /∈ Ri(A−i)
woi [βoi (A−i)− αi] if o ∈ Ri(A−i) (3)

where βoi (A−i) is the lowest unit cost at which nCDN i can
retrieve item o from a connected nCDN

βoi (A−i) , min
j∈N (i)

{βji |o ∈ Aj}. (4)

If instead o /∈ Ai, the cost saving CSoi (Ai, A−i) =
0. Hence, CSi(Ai, A−i) =

∑
o∈O CSoi (Ai, A−i) =∑

o∈Ai
CSoi (Ai, A−i). Observe that finding the minimum cost

for service provider i ∈ N corresponds to solving a knapsack
problem where the values of the items are their cost savings
given the allocations A−i of the other nCDNs, and where the
total weight is Ki.

B. Utility Model

We consider that bilateral compensations between nCDNs
are possible, if they are necessary to implement a content allo-
cation that serves all service providers’ interests. The bilateral
compensations model monetary transfers between federated
nCDNs, that would settle such payments periodically, similar
to peering agreements. We model a monetary payment pji from
service provider i to service provider j as an additive term in
the utility function of nCDNs i and j, thus we can define the
utility function of nCDN i in allocation A

Ui(A,p) = CSi(Ai, A−i) +
∑

j∈N\{i}

(pij − pji ). (5)

Observe that the utility is determined by the content alloca-
tion A and by the payment allocation p = (pji )i,j∈N .
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C. Complexity of Aggregate Utility Maximization

Before we turn to the problem formulation, let us consider
the problem of maximizing the aggregate utility of the nCDNs.
This optimization problem would have to be solved by a
central coordinator, if such a coordinator existed, in order to
enforce or to recommend allocations to the individual nCDNs.
Solving this optimization problem is also central to cooperative
game theoretic solutions, as we discuss later. To formulate
the optimization problem, observe that the aggregate utility
U(A) =

∑
i∈N Ui(A,p) does not depend on the payment

allocation p, and thus maximizing the aggregate utility is
equivalent to minimizing the average access latency Ci. An
optimal allocation would then be

Ã ∈ arg max
A

∑
i∈N

Ui(A,p) = arg max
A

∑
i∈N

CSi(Ai, A−i).

(6)
In the following we show that solving (6) is NP-hard.

Theorem 1. Computing allocation Ã that minimizes the
average access latency is NP-hard in general.

Proof. We prove the theorem by showing that the problem of
finding the chromatic number χ(G) of a graph G = (V,E)
can be reduced to finding an allocation Ã that solves (6).

A vertex coloring of a graph G(V,E) is a mapping c : V 7→
S. We denote by c−1(s) = {v ∈ V |c(v) = s, s ∈ S} the
inverse mapping of c. A proper coloring c is such that c(i) 6=
c(j) for all (i, j) ∈ E. The chromatic number of graph G,
denoted by χ(G), is the smallest number of colors such that
a proper coloring of graph G exists.

We first show that every proper coloring of G = (V,E) cor-
responds to an allocation A = (Ai)i∈V of content items to the
nCDNs i ∈ V in which each nCDN has unit storage capacity,
Ki = 1 and non-zero cost saving, i.e., CSoi (Ai, A−i) > 0.
For a coloring of G = (V,E), we let N = V , and the
interconnection graph G = (N,E). We set Ki = 1 for all
i ∈ G and use homogeneous costs among nCDNs, i.e., βji = β,
αi = α, γi = γ for all i, j ∈ V . In addition, we let |O| = |V |
and β = α. Observe that β = α implies that for all nCDNs
i ∈ N

CSoi (Ai, A−i) > 0⇒ o ∈ Ai, o /∈ Ri(A−i). (7)

Finally, we let the average rates of customer requests for con-
tent items be homogeneous among the nCDNs (i.e. woi = wo

∀i ∈ N ) but different among items, wo 6= wp ∀o 6= p,
o, p ∈ O.

To every coloring c of G = (V,E) we define the corre-
sponding allocation Ac as Aci = c(i), Sc ⊆ O. Such an
allocation exists since |O| = |V |. Analogously, we denote by
cA : V 7→ SA the coloring corresponding to allocation A. If c
is proper, it follows from the definition of Ac that Aci∩Acj = ∅
∀(i, j) ∈ E and therefore CSoi (A

c
i , A

c
−i) = wo[γ − α] > 0 for

item o ∈ Aci and ∀i ∈ V . Consequently, the aggregate utility
U(Ac) can be expressed in the form

U(Ac) =
∑
i∈V

∑
o∈Ac

i

wo[γ − α] = [γ − α]
∑
o∈S

wo|c−1(o)|. (8)

Consider now a solution Ã of (6). Since |O| = |V |,
CSoi (Ãi, Ã−i) > 0 for item o ∈ Ãi for all nCDNs i ∈ N .

Therefore, it follows from (7), that a coloring cÃ : V 7→ SÃ

is proper and U(Ã) is in the form (8). Since Ã is optimal, it
follows from (8) that

wo > wp ⇔ |cÃ
−1

(o)| ≥ |cÃ
−1

(p)| ∀o, p ∈ SÃ, (9)

as otherwise switching item o with item p in Ã would lead to
higher aggregate utility. To conclude the proof, let us define
the vector c̃ = (|cÃ−1

(o)|)o∈SÃ , which contains in decreasing
order for each item the number of times it is replicated.

Clearly |SÃ| ≥ χ(G), since cÃ is proper. In the follow-
ing we show by contradiction that |SÃ| = χ(G). Assume
|SÃ| > χ(G). Since

∑
o∈O |c−1(o)| = |V |, then there exists a

proper coloring c̄ such that c̄ >L c̃ (i.e., it is lexicographically
bigger). Therefore U(Ã) < U(Ac̄), which contradicts the
assumption and implies |SÃ| = χ(G). Therefore, given Ã,
it is possible to compute χ(G) as |SÃ| in the coloring cÃ.

Besides being NP-hard, computing an allocation Ã that
maximizes the aggregate utility is also impractical because it
requires the service providers to disclose business confidential
information such as their content demands.

D. Problem Formulation

If the service providers do not cooperate, i.e., the set of
connected nCDNs N (i) = ∅ for every service provider i,
service provider i would optimize the content allocation in
nCDN i in isolation, and would prefetch the Ki items with
highest demands. We denote the resulting allocation, which
is optimal in isolation, by AIi . The corresponding cost is
Ci(A

I
i ,∅) =

∑
o∈AI

i
woiαi +

∑
o∈O\AI

i
woi γi.

Cooperation could allow service providers to decrease their
average access latency cost compared to isolation. For an
allocation A and a payment allocation p = (pji )i,j∈N , we
define the cost saving gain as

ri(A) =
CIi (∅)− Ci(A) +

∑
j∈N\{i}(p

i
j − pji )

CIi (∅)− Ci(AIi ,∅)
(10)

where CIi (∅) =
∑
o∈O w

o
i γi is the cost incurred by service

provider i with no nCDN. We call an allocation A individually
rational if ri(A) ≥ 1. Observe that service provider i benefits
from cooperating only if ri(A) > 1.

Since there is no central authority, cooperation requires
a distributed algorithm that (i) needs information exchange
between connected service providers only, (ii) reveals little
private information such as content demands, (iii) in a finite
number of steps leads to a content allocation A and (iv) is
ex-post individually rational for all service providers.

III. STABLE ALLOCATIONS WITHOUT PAYMENTS

Without payments, a content allocation among intercon-
nected nCDNs would have to let every nCDN i allocate
content items that minimize its cost Ci, given the alloca-
tions of its connected nCDNs N (i). Such an allocation is
self-enforcing, as no nCDN could gain by deviating from
it. Modeling the interaction of nCDNs as a strategic game
Γ =< N, (Ai)i∈N , (Ui)i∈N >, where the utility of player i
is the sum of its cost savings Ui(Ai, A−i) = CSi(Ai, A−i),
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At time step t:
1) nCDN it ∈ N chooses a content allocation Ait(t) such

that CSit(Ait(t), A−it(t− 1)) > CSit(A(t− 1)).
2) nCDN it communicates to ∀j ∈ N (it) the sets of evicted

and inserted items, Eit(t) and Iit(t), respectively.

Fig. 1: Pseudocode of the Local-Greedy algorithm.

such a content allocation corresponds to a pure strategy Nash
equilibrium A∗ of Γ, i.e., a set of allocations (A∗i )i∈N such
that

A∗i ∈ arg max
Ai

Ui(Ai, A
∗
−i). (11)

It follows from (2) that Ci(A∗) ≤ Ci(AIi , A∗−i) ≤ Ci(AIi ,∅),
therefore A∗ is individually rational.

Given an initial allocation of content items, (Ai)i∈N , a
distributed algorithm that might be used to compute A∗

and one that reveals little private information is the Local-
Greedy algorithm shown in Fig. 1. According to the Local-
Greedy algorithm, at time step t a single nCDN it can update
its allocation from Ait(t − 1) to an allocation Ait(t) that
increases its cost saving given the allocations of the other
nCDNs A−it(t − 1). The Local-Greedy algorithm requires
little signaling: upon time step t nCDN it has to send the
set Eit(t) , Ait(t − 1) \ Ait(t) of evicted and the set
Iit(t) , Ait(t)\Ait(t−1) of inserted items to its neighboring
nCDNs. The Local-Greedy algorithm terminates when no
nCDN i can increase its cost saving by updating its allocation.
By definition (11), if the Local-Greedy algorithm terminates,
then the content allocation reached by the nCDNs is a pure
strategy Nash equilibrium A∗ of Γ.

In the particular case that the unit cost βji of serving a
request from a connected nCDN is not neighbor specific, it
was shown in (Theorem 1 in [7]) that Γ has a pure strategy
Nash equilibrium, which allows us to formulate the following.

Proposition 2 ([7]). If the link costs βji are neighbor-
homogeneous, i.e., βji = βi ∀i ∈ N, ∀j ∈ N (i), then the
strategic game Γ has a pure strategy Nash equilibrium.

Proposition 2 is so far the most general sufficient condition
for the existence of a Nash equilibrium of Γ, but the assump-
tion of neighbor-homogeneous costs is hard to justify in the
case of link costs modeling access latency. For the general
case, i.e., if link costs are not neighbor-homogeneous, it is
not known whether (i) an equilibrium allocation always exists
and whether (ii) the Local-Greedy algorithm would lead to
an equilibrium even if it exists. In what follows we show that
there are instances of the content allocation problem for which
an equilibrium allocation A∗ that satisfies (11) does not exist.

A. Non-Existence of Equilibrium Content Allocations

The strategic game Γ can be interpreted as a resource
allocation game where the resources are the items, coi ,
woi [γi − αi] ∈ R+ is the value of resource o for player i
and 0 < δji , βj

i−αi

γi−αi
< 1 is the penalty due to sharing the

resource with player j. The expression of the cost saving in
(3) becomes

(a)

δ2
1

δ4
1ca1

1cb1

(b)

δ3
2

δ1
2cb2

1cc2

(c)

δ4
3

δ2
3cc3

1cd3

Fig. 2: Cost saving graphs of nCDNs 1 to 3 in Example 1.
The squares show the cost savings of each nCDN given the
content allocation of its neighbors in the content allocation
(a, b, c, d, d).

1

2 3

4

5

(a)

δ5
4

δ3
4

δ1
4cb4

1cd4

(b)
Fig. 3: Interconnection graph (a) and cost saving graph (b) of
nCDN 4 in Example 1. The squares show the cost savings of
nCDN 4 in the content allocation (a, b, c, d, d).

CSoi ({o}, A−i) =

{
coi if o /∈ Ri(A−i)
coi min
j∈N (i)

{δji |o ∈ Aj} if o ∈ Ri(A−i).
(12)

Observe that the cost incurred by player i for retrieving item o
depends on which neighboring players store item o, not only
on whether any neighboring player stores it as in [8], [9], [7].
As a consequence, results on the existence of Nash Equilibria
in player-specific graphical congestion games do not apply.
Consider the following example.

Example 1. Consider nCDNs N = {1, . . . , 5} and the set
O = {a, b, c, d} of content items. The nCDNs are intercon-
nected according to the graph in Figure 3a. For nCDN 5

cd5δ
5
4 > co5 ∀o ∈ O \ {d}. (13)

For nCDN 1 the demands and the costs satisfy

δ2
1 < δ4

1 , c
a
1 < cb1, (14)

cb1δ
2
1 < ca1 < cb1δ

4
1 . (15)

Inequalities (14-15) specify a lattice (a poset with least
and greatest element) over the cost savings CSo1({o}, A−1),
which is shown in Figure 2a; we call it the cost saving
graph. An arrow between two cost savings points towards the
greater of the two.

The lattice is on the one hand the product of two totally
ordered sets (solid arrows): values {coi |o ∈ O} and link costs
{δji |j ∈ N (i)} ∪ {1}. The greatest element of the lattice is
the cost saving coi of the item o ∈ O with highest rate woi at
nCDN i when it is not allocated by any connected nCDN j ∈
N (i), i.e. o /∈ Ri(A−i) ⇒ CSoi ({o}, A−i) = coi . The least
element of the lattice is the cost saving cpi δ

j
i of the item p ∈ O

with lowest rate wpi when it is allocated by the connected
nCDN j ∈ N (i) such that j = arg mink∈N (i) δ

k
i . On the other

hand, the lattice is specified through additional inequalities,
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such as (15) for nCDN 1 (dashed lines).
The cost saving graphs for nCDNs i ∈ {2, 3, 4} are

shown in Figure 2b, 2c and 3b, respectively. The squares in
Figures 2 and 3b represent the cost savings CSoi (Ai, A−i) of
the corresponding nCDN i ∈ {1, 2, 3, 4} at content allocation
A = (a, b, c, d, d). We omit the relations between cost savings
that are not relevant for the example.

We are now ready to prove the following.

Theorem 3. There are instances of the strategic game Γ that
do not possess a pure strategy Nash equilibrium. Consequently,
an equilibrium allocation A∗ that satisfies (11) does not
always exist.

Proof. We prove the theorem by showing that the game
described in Example 1 does not possess a Nash equilibrium.
From (13) it follows that no content allocation A such that
A5 6= {d} is a Nash equilibrium. We can furthermore restrict
the action set of each nCDN to the items that are included in
its cost saving graph, according to the following

A1 =
{
{a}, {b}

}
A2 =

{
{b}, {c}

}
A3 =

{
{c}, {d}

}
A4 =

{
{d}, {b}

}
This results in a total of 16 possible content allocations. From
the cost saving graphs in Figures 2 and 3b it follows that
any content allocation where two interconnected nCDNs store
the same item is not a Nash equilibrium; there are 12 such
allocations. Therefore, it is enough to focus on the 4 content
allocations in which there is no pair of interconnected nCDNs
that store the same item.
The following sequence of content allocations starts with these
four content allocations (marked with bold) and shows a
cycling sequence of updates of nCDNs that follow the Local-
Greedy algorithm. We omit nCDN 5, which always stores item
(d).

(a, b, c,d) −→
4

(a, b, c, b) −→
3

(a, b,d, b)

−→
2

(a, c,d, b) −→
1

(b, c, d, b) −→
4

(b, c, d, d)

−→
3

(b, c, c, d) −→
2

(b, b, c, d) −→
1

(a, b, c, d)

There is thus no NE, which proves the theorem.

In the following we consider two assumptions on the
link costs between service providers that can be considered
reasonable. We show that, alas, neither of them is sufficient
for equilibrium content allocations to exist.

B. Symmetric Link Costs

The first assumption concerns the relationship between the
link costs δji and δij of interconnected nCDNs. According to
recent measurement studies [10], [11], the delay between hosts
tend to be symmetric, thus it may be reasonable to assume that
link costs are symmetric between interconnected nCDNs, i.e.,
δji = δij ∀j ∈ N (i). In the case of Example 1, the requirement
of symmetric link costs implies a feasible total order on the
link costs, 1 > δ4

1 > δ2
1 > δ3

2 > δ4
3 > δ5

4 , which leads to the
following.

(a)

δ3
2

δ1
2

δ4
2cb2

1cc2

(b)

δ4
3

δ2
3

δ5
3cc3

1cd3

(c)

δ5
4

δ3
4

δ1
4

δ2
4

1

cb4

cd4

Fig. 4: Cost saving graphs of nCDNs 2 (a), 3 (b) and 4 (c) as
described in Section III-C. The squares show the cost savings
of each nCDN given the content allocation of its neighbors in
the content allocation (a, b, c, d, d).

Corollary 1. There are instances of the strategic game Γ with
symmetric link costs that do not possess a pure strategy Nash
equilibrium.

A corresponding non-existence result for the case of a
linear cost function and a directed interconnection graph was
provided in [12]. Observe that, in our model, a link (i, j)
is effectively directed if δji is sufficiently smaller than δij ,
such that the content allocated at nCDN i does not affect the
allocation that minimizes the cost function of nCDN j. The
importance of Corollary 1 is that it extends the non-existence
results to undirected interconnection graphs.

C. Link Costs Satisfying the Triangle Inequality

Second, let us consider that the link costs on the intercon-
nection graph G satisfy the triangle inequality. This assumption
might be reasonable both in the case of latency and traffic cost
minimization, as measurement studies showed that the triangle
inequality is violated by less than 4% of host triplets in the
Internet [13]. The triangle inequality implies that for every
service provider i ∈ N the following holds

δji + δkj ≥ δki ∀j ∈ N (i). (16)

Corollary 2. There are instances of the strategic game Γ with
symmetric link costs satisfying the triangle inequality that do
not possess a pure strategy Nash equilibrium.

Proof. Let us impose constraint (16) on the link costs of
Example 1. The interconnection graph in Figure 3a contains
now 5 new edges, namely (1, 3), (1, 5), (2, 5), (2, 4) and (3, 5).
Note that the items included in the cost saving graphs of
service providers 1 and 3 in Figure 2 form disjoint sets, hence
the link (1, 3) does not change the cost saving graphs. The
same holds for the links (1, 5) and (2, 5). Hence we restrict our
analysis to the links (2, 4) and (3, 5). From (12) it follows that
the addition of a link (i, j) between nCDNs i and j can only
decrease the cost savings CSi and CSj . Choosing δ4

2 and δ5
3

large enough, as shown in the cost saving graphs of Figure 4,
would therefore not break any of the arguments of the proof
of Theorem 3.
Assuming also symmetric link costs, the cost saving graph of

nCDN 1 in Figure 2 and the cost saving graphs in Figure 4
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imply the following inequalities

δ4
2 > δ4

1 > δ2
1 > δ3

2 > δ4
3 > δ5

4 , (17)

δ5
3 > δ3

2 . (18)

In addition to the above lower-bounds on δ4
2 and δ5

3 , the
triangle inequality in (16) introduces the following upper-
bounds.

δ4
2 ≤ min(δ2

1 + δ4
1 , δ

3
2 + δ4

3) = δ3
2 + δ4

3 (19)
δ5
3 ≤ δ4

3 + δ5
4 . (20)

It is easy to see that a set of link costs satisfying (17)-(20)
exists.

Theorem 3 and Corollary 1 and 2 imply that if payments
are not allowed then cost minimizing nCDNs may not be
able to compute a content allocation, and no distributed al-
gorithm, including Local-Greedy, would ever terminate. Since
it is infeasible to determine a-priori whether an equilibrium
allocation exists (for reasons of computational complexity and
because doing so would require global knowledge), computing
a content allocation must involve payments to guarantee finite
execution time.

IV. BILATERAL COMPENSATION-BASED ALLOCATION

A natural solution involving payments would be to model
the problem as a cooperative game with transferable utility
and use an existing solution concept, such as the Shapley
value [14], for computing the compensations.

A. Cooperative solution concepts are infeasible

To model the problem as a cooperative game, we define a
coalition as a subset S ⊆ N of service providers connecting
their nCDNs so as to decrease their average access latency.
The nCDNs in coalition S are interconnected according to the
subgraph GS = (S,ES) induced on G by S. The cooperative
game (N, v) is defined by the value function v : 2N 7→ R that
maps any coalition S to a real value v(S). As the service
providers aim at minimizing the average access latency to
content items, it is natural to define the value function v(S)
of coalition S ⊆ N as the maximum cost saving achievable
by the set of players that form the coalition,

v(S) =
∑
i∈S

CIi (∅)−min
AS

∑
i∈S

Ci(AS ,∅). (21)

The value v(N) of the grand coalition N can be shared among
the members of the coalition through compensations to form
an imputation, i.e., an efficient and individually rational utility
vector. As we next show, an imputation exists.

Lemma 1. The Shapley value for the coalitional game (N, v)
is individually rational.

Proof. To prove this result, we have to show that the value
function v is superadditive, i.e., for any two coalitions S, S′ ⊂
N and S ∩ S′ = ∅, it holds that v(S ∪ S′) − v(S) −
v(S′) ≥ 0. For a coalition T ⊆ N let us define ĀT ,

arg minAT

∑
i∈T Ci(AT ,∅) as the content allocation achiev-

ing the minimum aggregate cost for the players in coalition T .
Using the expression of the value function (21) we obtain

v(S ∪ S′)− v(S)− v(S′) =

−min
AS∪S′

∑
i∈S∪S′

Ci(AS∪S′ ,∅) +
∑
i∈S

Ci(Ā
S ,∅)+

∑
i∈S′

Ci(Ā
S′
,∅).

Observe that (2) implies that for any two coalitions S, S′ ⊂ N
such that S ∩ S′ = ∅ and any A ∈ A,∑
i∈S

Ci(AS ,∅) +
∑
i∈S′

Ci(AS′ ,∅) ≥
∑

i∈S∪S′

Ci(AS∪S′ ,∅).

Hence, for ĀS , ĀS
′

and the aggregate allocation (ĀS , ĀS
′
) ,

((ĀSi )i∈S , (Ā
S′

i )i∈S′) we obtain∑
i∈S

Ci(Ā
S ,∅)+

∑
i∈S′

Ci(Ā
S′
,∅) ≥

∑
i∈S∪S′

Ci((Ā
S , ĀS

′
),∅)

≥ min
AS∪S′

∑
i∈S∪S′

Ci(AS∪S′ ,∅),

which implies v(S ∪ S′) − v(S) − v(S′) ≥ 0 and proves the
lemma.

Nonetheless, computing the Shapley value and other co-
operative solutions that rely on the characteristic function is
infeasible for two reasons. First, computing the characteristic
function of a coalition requires a single entity to know all con-
tent demands. Second, observe that computing the value v(S)
of coalition S as defined in (21) corresponds to solving (6)
for the set S of nCDNs, and is thus NP-hard as shown in
Theorem 1.

Motivated by the failure of existing solution concepts, in the
following we propose two distributed algorithms that involve
bilateral compensations for computing an individually rational
content allocation. The two algorithms differ in the amount of
revealed private information, in the level of parallelism that
they allow and, as we will see, in terms of convergence rate.

B. Aggregate-value Compensation Algorithm

Following the aggregate value compensation (AC) algo-
rithm, at every time step t there is a set Nt ⊆ N of
nCDNs that is allowed to update its content allocation. Given
an allocation of content items A(t − 1), an update made
by nCDN it ∈ Nt from Ait(t − 1) to Ait(t) can result
in an increase of the cost (1) for one or more connected
CDNs j ∈ N (it). According to the AC algorithm, an
nCDN j ∈ N (it), it ∈ Nt, that would suffer an increase
of cost Cj(ANt

(t), A−Nt
(t − 1)) > Cj(A(t − 1)), offers a

compensation pitj (t) to a nCDN it ∈ N (j) ∩ Nt equal to its
cost increase

pitj (t) = ∆Cj(t) , Cj(Ait(t), A−it(t− 1))− Cj(A(t− 1)).

We use Dt ⊆ N (it) to denote the set of nCDNs that offer a
compensation,

j ∈ Dt ⇔ ∆Cj(t) > 0. (22)

The compensations are used to deter nCDNs from performing
updates: nCDN it ∈ Nt performs the update despite the
offered compensation if the aggregate compensation offered
by all connected nCDNs is lower than the gain it achieves from
updating the content allocation from Ait(t− 1) to Ait(t). We
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At time step t:
1) Every nCDN it ∈ Nt computes a content allocation

APit(t) s.t. CSit(A
P
it

(t), A−it(t− 1)) > CSit(A(t− 1)).
2) Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) the

set of items it plans to evict Eit(t) and insert Iit(t).
3) Every nCDN j ∈ N (Nt) s.t. ∆Cj(t) > 0 offers a com-

pensation pitj (t) = ∆Cj(t) to one nCDN it ∈ N (j)∩Nt
4) If

∑
j∈Dt

pitj (t) ≥ −∆Cit(t), then nCDN it accepts
the compensation and it does not make the update, i.e.,
Ait(t) = Ait(t− 1).
Otherwise nCDN it refuses the compensation and up-
dates its allocation from Ait(t− 1) to Ait(t) = APit(t).

5) Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) its
decision, i.e. whether Ait(t)=Ait(t−1) or Ait(t)=APit(t).

Fig. 5: Aggregate-value Compensation (AC) Algorithm

call this the Aggregate-value Compensation (AC) algorithm,
and we show its pseudo-code in Figure 5.

Observe that the AC algorithm does not specify how Nt is
chosen at each time step t. Before proving convergence for
specific choices of Nt, we make the following definition.

Definition 1. A sequence Nt ⊆ N , t = 1, . . . of sets of
nCDNs is a complete sequence, if for all t and each nCDN i ∈
N there exists a time step t′ > t such that i ∈ Nt′ .

1) Asynchronous operation: Let us first consider that
only one nCDN it ∈ Nt is allowed to update its allocation
at each time slot t. Thus, the sets Nt1 , Nt2 .. are singletons
and nCDN it is the only recipient of the compensation of
each nCDN j ∈ Dt. The following result shows that the AC
algorithm converges if used asynchronously.

Theorem 4. Let Nt be a complete sequence of singleton sets
and every nCDN use the AC algorithm. We refer to this as
the 1-AC algorithm. The 1-AC algorithm converges to an
allocation A of content items to interconnected nCDNs in a
finite number of time steps.

Proof. We prove the theorem by showing that the aggregate
cost C(A) ,

∑
i∈N Ci(Ai, A−i) strictly decreases at every

update made by any nCDN following the 1-AC algorithm.
Consider a nCDN it that updates its content allocation from

Ait(t − 1) to Ait(t) at time step t. It follows from (2) that
Ck(A(t)) = Ck(A(t− 1)) for any nCDN k /∈ N (it). We can
calculate the aggregate cost function C(A(t)) after the update
of nCDN it as

C(A(t)) = C(A(t−1))+∆Cit(t)+
∑
j∈Dt

∆Cj(t)+
∑

j∈N (it)\Dt

∆Cj(t).

From (22) it follows that
∑
j∈N (it)\Dt

∆Cj(t) ≤ 0. More-
over, since nCDN it refused the compensation offered by
the connected nCDNs in Dt, it follows that ∆Cit(t) +∑
j∈Dt

∆Cj(t) < 0. Hence, at every update of the 1-AC
algorithm C(A(t)) < C(A(t−1)). Since the set of all content
allocations is finite and the sequence Nt is complete, this
proves the theorem.

A significant shortcoming of the 1-AC algorithm is that

it requires global synchronization. Furthermore, if nCDN it
is chosen uniformly at random at every time step t, the
probability that nCDN it can decrease its cost Cit by updating
its content allocation Ait(t − 1) at time step t decreases as
the 1-AC approaches allocation A. As a consequence, the
convergence of the 1-AC algorithm may be slow.

2) Plesiochronous operation: In the following we show
that convergence can be guaranteed even if the sets Nt are
not singletons. Before we formulate our result, we recall the
following definition from graph theory.

Definition 2. A k-independent set Ik of a graph G = (N,E)
is a subset Ik ⊆ N of the vertexes of G such that the distance
between any two vertexes of Ik in G is at least k + 1. We
denote by Ik the set of all the k-independent sets of the
interconnection graph G.

We can now prove the following.

Theorem 5. Let Nt be a complete sequence of 2-independent
sets and every nCDN use the AC algorithm. We refer to this
as the I2-AC algorithm. The I2-AC algorithm converges to
an allocation A of content items to interconnected nCDNs in
a finite number of time steps.

Proof. Consider a nCDN j ∈ N (it), connected to it ∈ I2
t .

From the definition of 2-independent set follows that it is
the only nCDN in N (j) that is allowed to update its content
allocation Ait at time step t. Hence, it is possible to compute
the aggregate cost function C(A(t)) from C(A(t − 1)) as
follows

C(A(t)) = C(A(t− 1)) +

+
∑
it∈Ut

(
∆Cit(t) +

∑
j∈Dt

∆Cj(t) +
∑

j∈N (it)\Dt

∆Cj(t)
)
,

where Ut ⊆ I2
t is the set of nCDNs it such that Ait(t) 6=

Ait(t−1). From the same argument in the proof of Theorem 4
it follows that C(A(t)) < C(A(t− 1)) at every update of the
I2-AC algorithm.

3) Equilibria under the AC algorithm: So far we showed
that the AC algorithm converges to a content allocation A in
a finite number of time steps if Nt is a complete sequence
of singleton sets or 2-independent sets. In the following we
provide a characterization of the set of content allocations that
it converges to.

Proposition 6. Let us define the utility function
Gi(A) , CSi(A) +

∑
j∈N (i) CSj(A) and the strategic

game Γ′ ,< N, (Ai)i∈N , (Gi)i∈N >. A content allocation
A computed by the AC algorithm is a Nash equilibrium of
the strategic game Γ′.

Proof. The proof follows from the condition at stage 4) of
the AC algorithm in Figure 5, which implies that an update
of nCDN it at time step t decreases the aggregate cost of
nCDN it and its connected nCDNs N (it).

We can provide an alternative characterization of the set
of content allocations reached by the AC algorithm based
on the utility function (5). Let us define the set of possible



8

At time step t:
1) Every nCDN it ∈ Nt computes a content allocation

APit(t) such that CSit(A
P
it

(t), A−it(t− 1)) > CSit(A(t−
1)).

2) Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) the
set of items it plans to evict Eit(t) and insert Iit(t).

3) Every nCDN j ∈ ∪it∈Nt
N (it) calculates

∆C̃oj (t) = Coj (APNt
(t), A−Nt

(t− 1))− Coj (A(t− 1))

for all o ∈ ∪Nt
Eit . If ∆C̃oj (t) > 0, nCDN j offers to a

nCDN k ∈ Nt such that o ∈ Ek and βkj = βoj (A−k(t))

a compensation poj,k(t) , ∆C̃oj (t).
4) If

∑
j∈Dit

∑
o∈Eit

poj,it(t) ≥ −∆Cit(t), then nCDN it
accepts the offer and it does not make the update, i.e.,
Ait(t) = Ait(t− 1).
Otherwise nCDN it refuses the offer and updates its
allocation from Ait(t− 1) to Ait(t) = APit(t).

5) Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) its
decision, i.e. whether Ait(t)=Ait(t−1) or Ait(t)=APit(t).

Fig. 6: Object-value Compensation (OC) Algorithm

updates of nCDN i in allocation A as PUi(A) , {A′i ∈
Ai|CSi(A′i, A−i) > CSi(A)}.
Proposition 7. A content allocation A computed by the
AC algorithm is a Nash equilibrium of the strategic game
Γ =< N, (Ai)i∈N , (Ui)i∈N > where the payment allocation
p = (pji )i,j∈N is defined as

pij , max{0, max
A′

i∈PUi(A)
Cj(A

′
i, A−i)− Cj(A)}.

Proof. The proof follows directly from the condition at
stage 4) of the AC algorithm in Figure 5.

The set of content allocations reached by the AC algorithm
is not a singleton in general. To see this, observe that a
Nash equilibrium of the strategic game Γ with null payment
allocation (i.e., pij = 0 ∀i, j ∈ N ), if it exists, is a stable
allocation under the AC algorithm. Furthermore, it is easy to
construct instances of the strategic game Γ with null payment
allocation that possess more than one Nash equilibrium.

C. Object-value Compensation Algorithm

Since the 2-independent sets of G are typically small, the
number of nodes that can make updates simultaneously in the
I2-AC algorithm is small, and thus the convergence rate of
I2-AC may be only marginally faster than that of 1-AC. The
number of simultaneous updates could be increased by using
1-independent sets, i.e., I1-AC, but the convergence of the I1-
AC algorithm can not be guaranteed. We therefore propose an
alternative to the AC algorithm.

The object value compensation (OC) algorithm, shown in
Figure 6, is similar to the AC algorithm; the difference is that
nCDNs offer a compensation for each individual object that is
to be evicted, instead of offering a compensation for the set of
objects to be evicted. As we will see this difference allows for
significantly faster convergence, but at the price of revealing
more information about content item popularities.

1) Set `← 1 and N `
c ← N

2) At round `:
• The nCDNs in N `

c run algorithm AC or OC until it
terminates, in allocation A.

• Set A` ← A and N `+1
c ← {i ∈ N `

c |ri(A`) ≥ 1}.
3) If |N `

c \N `+1
c | > 0:

• Set `← `+ 1 and go to step 2).

Fig. 7: OPT OUT scheme

For the OC algorithm we can prove the following.

Theorem 8. Let Nt be a complete sequence of 1-independent
sets and every nCDN use the OC algorithm. We refer to this
as the I1-OC algorithm. The I1-OC algorithm converges to
an allocation A of content items to interconnected nCDNs in
a finite number of time steps.

Proof. Consider the compensation poj,k(t) offered by nCDN j
to nCDN k for the eviction of item o ∈ Ek at time step t.
Substituting (3) in the expression of ∆C̃oj (t) we obtain

poj,k(t) = woj

[
βoj

(
(API1t

(t), A−I1t (t− 1))
)
− βoj (A(t− 1))

]
.

We call Ut the set of nCDNs that update their con-
tent allocation at time step t of the algorithm, i.e. Ut =
{it ∈ I1

t |Ait(t) 6= Ait(t − 1)}. Since Ut ⊆ I1
t ,

it follows from (4) that βoj

(
(API1t

(t), A−I1t (t− 1))
)
≥

βoj
(
(APUt

(t), A−Ut(t− 1))
)

and thus

poj,k(t) ≥ Coj (A(t))− Coj (A(t− 1)). (23)

In the following we use (23) to prove that C(A(t)) < C(A(t−
1)) at every update of the I1-OC algorithm. We can express
the aggregate cost change ∆C(t) = C(A(t)) − C(A(t − 1))
as

∆C(t) =
∑
it∈Ut

∆Cit(t) +
∑
j∈Dt

∆Cj(t) +
∑

j∈N (it)\Dt

∆Cj(t). (24)

From (23) it follows that the second term∑
j∈Dt

∆Cj(t) =
∑
j∈Dt

∑
o∈O

∆Coj (t) ≤
∑
j∈Dt

∑
o∈O

poj,k(t). (25)

Substituting (25) into (24) we obtain

∆C(t) ≤
∑
it∈Ut

∆Cit(t) +
∑
j∈Dt

∑
o∈O

poj,k(t)

=
∑
it∈Ut

(
∆Cit(t) +

∑
j∈Dit

∑
o∈O

poj,it(t)
)
.

Since every nCDN it ∈ Ut refused the offer and updated its
allocation, it holds that ∆Cit(t) +

∑
j∈Dit

∑
o∈O p

o
j,it

(t) < 0
for all it ∈ Ut. Since the set of all content allocations is finite
and the sequence Nt is complete, this proves the theorem.

D. Achieving Individual Rationality

The proposed algorithms terminate in a finite number of
time steps in a content allocation A from which no nCDN
adhering to the compensation algorithm would like to deviate.
However, the resulting content allocation A may not be
individually rational, i.e., there may be some nCDNs i for
which ri(A) < 1. The nCDNs i ∈ {i ∈ N |ri(A) < 1}



9

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Cost saving ratio (ri(Ā))
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Fig. 8: Probability density estimate of ri(Ā) for the three
algorithms 1-AC, I2-AC and I1-OC on the CAIDA, CAIDA-
BA and CAIDA-ER graphs. Results from 400 simulations.
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average cost saving ratio ri(Ā) at allocation Ā, as a function
of the edge ratio d for the three algorithms on the CAIDA
graph.

would not have an incentive to implement Ai, and would
instead implement AIi . The OPT OUT scheme, shown in
Figure 7, allows these nCDNs to implement AIi instead of Ai

and iteratively re-executes the distributed algorithm with the
remaining nCDNs; hence the final allocation is individually
rational.

Corollary 3. The OPT OUT scheme reaches an individually
rational content allocation Ā in a finite number of iterations.

Proof. Observe that the OPT OUT scheme terminates in allo-
cation Ā = (A`N`

c
, AIN\N`

c
) only if N `

c = N `+1
c at step 3).

This is true if either |N `
c | = 0 or ri(A`) < 1 ∀i ∈ N `

c . In both
cases Ā is individually rational.

Thus the I2-AC and the I1-OC algorithms combined
with the OPT-OUT scheme are ex-post individually rational
distributed algorithms for computing content allocations in a
finite number of time steps, without prior global knowledge
of the item popularities.

V. EVALUATION

We use simulations to validate the results in Section IV and
to evaluate the convergence rate and the achieved gains for the
cooperating nCDNs.

We consider three network topologies for the evaluation.
The first topology is based on the Internet’s AS-level topology
reported in the CAIDA dataset [15] as of 1 Nov. 2013. In
order to have a fairly large interconnection graph, we consider
the ASes in the CAIDA dataset that are in Europe. As very
small ASs are unlikely to deploy their own CDNs, we only
consider ASs that have more than 216 IP addresses allocated.
We consider two ASes connected if they have a business
relationship (peering or transit) reported in the CAIDA dataset.
We call CAIDA graph the largest connected component of
the resulting topology, which consists of 638 ASes with an
average node degree of 10.77. The other two topologies are
Erdős-Rényi (CAIDA-ER) and Barabási-Albert (CAIDA-BA)
random graphs that have same number of vertexes, average
node degree and node degree ranking as the CAIDA graph.
The node degree distributions of the three topologies do,

however, differ in terms of their skeweness. We computed
distance-1 and distance-2 colorings of all graph topologies by
using the Welsh-Powell [16] and the Lloyd-Ramanathan [17]
algorithms, respectively. We used αi = 0.5, γi = 20 at every
nCDN and we computed the βji as the propagation delay
between nCDNs i and j assuming a signal propagation speed
of 2 · 105 km/s. We considered |O| = 3000 objects and the
demands woi for the content items at the various nCDNs follow
Zipf’s law with exponent 1. To simulate the algorithms, at
each time step we choose an nCDN or a k-independent set
uniformly at random, thus the sequence is complete. If not
otherwise specified, the results shown are the averages of 200
simulations and Ki = 20 for every nCDN i ∈ N . We omit
the confidence intervals as the results are within 5% of the
average at a 0.95 confidence level.

A. Individual Rationality
We start with considering the gain of cooperation and

the necessity of the OPT OUT scheme. Figure 8 shows the
probability density estimate of the cost saving ratios ri(A`=1)
at the end of the first round of the OPT OUT scheme (` = 1)
for all nCDNs for the three interconnection graphs and the
three algorithms. The results show that the share of nCDNs for
which the allocation is individually rational after the first round
is determined by the graph topology. For the CAIDA-ER and
the CAIDA-BA graphs, the content allocation is individually
rational, ri(A`=1) ≥ 1, for all nCDNs, and thus the OPT
OUT scheme terminates after the first round, i.e. Ā = A`=1.
On the contrary, for the CAIDA graph for many nCDNs
ri(A

`=1) < 1 after the first round. The difference is due to that
the degree distribution of the CAIDA-BA graph is the most
right-skewed among all the interconnection graphs, while the
degree distribution of the CAIDA-ER graph is not skewed.

Observe that the probability densities for the 1-AC and I2-
AC algorithms overlap, and are similar to that for the I1-OC
algorithm. This suggests that the choice of the algorithm seems
to have little impact on the gain from cooperation achieved by
the nCDNs.

We evaluate the sensitivity of the results on synthetic topolo-
gies based on the CAIDA graph. The synthetic topologies
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Fig. 11: Average number of time steps needed to reach
allocation A` as a function of the edge ratio d for the
three algorithms on the CAIDA, CAIDA-BA and CAIDA-ER
graphs.

were created by removing all edges from the CAIDA graph,
and then reintroducing d fraction of the edges at random; the
probability of reintroducing an edge between ASes i and j
was proportional to the product of the number of IP addresses
allocated to AS i and j.

Figure 9 shows the number of nCDNs choosing to cooperate
and the average cost saving ratio ri(Ā) for the allocation Ā
reached by the OPT OUT scheme, for the algorithms 1-AC,
I2-AC and I1-OC on the CAIDA graph. The figure shows
that the number of cooperating nCDNs is a decreasing convex
function of the edge ratio d, suggesting that the majority of the
nCDNs would not opt out from cooperation even if the graph
was denser. Furthermore, the number of nCDN that would not
opt out from cooperation is about 6% higher for the I1-OC
algorithm compared to the I2-AC algorithm. At the same time
the average cost saving ratio increases linearly, which is due
to that the nCDNs have access to a linearly increasing amount
of storage at neighbors.

B. Convergence Rate

We characterize the rate of convergence of the 1-AC, I2-
AC and I1-OC algorithms by comparing the number of time
steps needed to reach allocation A` during one round ` of the
OPT OUT scheme. The number of time steps needed to reach
A` is proportional to the time required by the algorithms to
converge, as it also captures the parallelism embedded in the
plesiochronous I2-AC and I1-OC algorithms.

Figure 10 shows the complementary CDF of the number
of time steps needed to reach allocation A` based on 400
simulations for the three algorithms on the CAIDA, CAIDA-
BA and CAIDA-ER graphs. The tail of each distribution
decreases exponentially or faster as the number of time steps
increases, which suggests that the rate of convergence is
geometric. As expected, the 1-AC algorithm performs worst
in terms of convergence rate, as it does not allow the nCDNs
to update their allocations simultaneously. I2-AC and I1-OC
are up to two orders of magnitude faster than 1-AC. Note that
the fast convergence of the I1-OC algorithm is achieved at the
price of increased information exchange between connected

nCDNs compared to the 1-AC and I2-AC algorithms. In
practice, the object-wise information exchange between ASs
may be problematic due to privacy concerns.

Figure 11 shows that the average number of time steps
needed to reach allocation A` is an increasing concave func-
tion of the edge ratio d for all algorithms and interconnection
graphs. Observe that the three interconnection graphs rank
analogously for algorithms I2-AC and I1-OC but not for
algorithm 1-AC. The reason lies in the average sizes of the
k-independent sets used by the algorithms, which are reported
in Table I. The higher the average size of the k-independent
sets, the higher the parallelism achieved by the Ik-COMP
algorithm, and the faster the convergence. As the coloring of
the interconnection graph does not affect the performance of
the 1-AC algorithm, the rankings of the three curves in both
Figures 10 and 11 reflect other characteristics of the different
network topologies.

Graph #1-ind. sets avg. size #2-ind. sets avg. size
CAIDA 16 39.8 219 2.9
CAIDA-BA 10 63.8 131 4.9
CAIDA-ER 8 79.8 36 17.8

TABLE I: Number of k-independent sets and corresponding
average size for the CAIDA, CAIDA-BA and CAIDA-ER
interconnection graphs.

C. Scaling for Storage Capacity

In the following we investigate the effect of increasing the
storage capacity Ki on the convergence rate of the proposed
algorithms. Figure 12 shows the average number of time steps
to reach allocation A` during one round ` of the OPT OUT
scheme. We plot one curve for each algorithm on each of
the CAIDA and CAIDA-BA graphs, as a function of the
storage capacity Ki. The convergence rate is surprisingly
insensitive to the storage capacity and the algorithms rank
analogously to Figure 11. To explain this insensitivity we plot
the average number of content item updates performed by
the nCDNs for the same algorithms and graphs in Figure 13.
We make two observations. First, the number of content item
updates is the same for 1-AC and I2-AC, as they are both
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Fig. 12: Average number of time steps needed to reach
allocation A` as a function of the storage capacity Ki for
the algorithms 1-AC, I2-AC and I1-OC on the CAIDA and
CAIDA-BA graphs.
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Fig. 13: Average number of content item updates needed to
reach allocation A` as a function of the storage capacity Ki for
the three algorithms on the CAIDA and CAIDA-BA graphs.

based on aggregate value compensation. The nCDNs perform
less updates using the I1-OC algorithm, as they exchange
object-wise compensations. The nCDNs perform less updates
using the I1-OC algorithm, as they exchange object-wise
compensations. Second, an nCDN can do an arbitrary number
of content item updates during one time step, thus although
the number of content items increases for larger storage sizes,
this does not result in slower convergence in Figure 12.

VI. RELATED WORK

Our work is related to recent works on content placement
in the context of CDNs [2], [18], [19], [20]. The majority
of these works assume a single CDN operator and optimize
content placement given a single performance objective. The
authors in [18], [19] considered centralized algorithms for
content placement and compared the retrieval cost for the dif-
ferent algorithms. Recently, [20], [21] considered distributed
algorithms that optimize for a single performance objective
and provided analytical results for tree networks. The authors
in [22], [23] considered a hybrid network with in-network
caching and they proposed centralized algorithms for the
joint problem of request routing and content replication. [23]
considered strict bandwidth constraints at the storage sites. A
more generic cost model was studied in [24], where the authors
developed a centralized algorithm with approximation guaran-
tee by rounding the optimal solution of the LP-relaxation of the
problem. In contrast to these works, in this paper we consider
distributed algorithms for operator-managed CDNs, and thus
the allocations need to be individually rational.

Orthogonal to the problem we consider are the recent works
in [25], [26], which focus on the commercial interactions
between a network operator aiming at minimizing its content
delivery costs and the content providers serving content to
the operator’s subscribers. [25], [26] develop incentive mecha-
nisms, e.g. payment schemes, to compute individually rational
allocations that jointly maximize the profit of the content
providers and the network operator. In our work we consider
content providers outsourcing the content delivery to several
nCDNs, and we focus on the commercial interactions among
interconnected nCDNs.

Closely related to ours are recent works on distributed
selfish replication. Game theoretical analyses of equilibria and
convergence for distributed selfish replication were considered
in [8], [27], [28], [29], [30], [7]. The authors in [8] showed
the existence of equilibria when the access costs are homo-
geneous and nodes form a complete graph. Similarly, [27],
[28] assumed homogeneous costs and calculated the social
cost of equilibria. The latter works considered that the nodes
had no restriction on where to retrieve the content from. Other
works [29], [30], [7] relax this assumption and introduce an
interconnection graph to restrict the interaction between nodes.
[29] assumed unit storage capacity and an infinite number of
objects, showed the existence of equilibria and analyzed the
price of anarchy for some special cases. [30] considered a
variant of the problem where nodes can replicate a fraction of
objects, and showed the existence of equilibria. The authors
in [7] showed results in terms of convergence to equilibria
in the case of homogeneous neighbor costs. In this paper we
show that equilibrium existence results cannot be extended
to the general problem of content replication on graphs and
propose compensation-based algorithms that are guaranteed to
converge.

Individually rational allocation of costs and revenues is the
subject of cooperative game theory. Solution concepts such
as the Shapley value and the core have found application in
Internet routing [31] and in resource allocation [32], but these
solution concepts require complete information and global
enforcement, which make them impractical in the considered
scenario. To the best of our knowledge this is the first work that
proposes ex-post individually rational distributed algorithms
for interconnected CDNs.

VII. CONCLUSION

We considered the problem of computing a content alloca-
tion among interconnected network CDNs. We showed that
finding an allocation that minimizes the aggregate cost of
the CDNs is computationally prohibitive and that such an
allocation would need a central authority to be enforced. More-
over, we showed that without payments there may be no self-
enforcing allocation that minimizes the cost of every CDN,
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but bilateral payments are sufficient to guarantee the existence
of an equilibrium allocation. For the case that payments are
possible, we proposed two bilateral compensation-based dis-
tributed algorithms that converge to an equilibrium allocation
and that are ex-post individually rational. The two algorithms
require different amounts of information to be revealed by the
CDNs, and allow different levels of parallelism. Numerical
results show that the algorithms have geometric convergence,
and that if CDNs reveal more private information about their
content demands, the convergence of the algorithms becomes
faster. Our results also show that the convergence times are
fairly insensitive to the graph density and the amount of CDN
storage.
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