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Abstract—A future content-centric Internet would likely consist
of autonomous systems (ASes) just like today’s Internet. It would
thus be a network of interacting cache networks, each of them
optimized for local performance. To understand the influence of
interactions between autonomous cache networks, in this paper we
consider ASes that maintain peering agreements with each other
for mutual benefit, and engage in content-level peering to leverage
each others’ cache contents. We propose a model of the interaction
and the coordination between the caches managed by peering ASes.
We address whether stable and efficient content-level peering
can be implemented without explicit coordination between the
neighboring ASes or alternatively, whether the interaction needs
to rely on explicit announcements of content reachability in order
for the system to be stable. We show that content-level peering
leads to stable cache configurations, both with and without coor-
dination. If the ASes do coordinate, then coordination that avoids
simultaneous updates by peering ISPs provides faster and more
cost efficient convergence to a stable configuration. Furthermore,
if the content popularity estimates are inaccurate, content-level
peering is likely to lead to cost efficient cache allocations. We
validate our analytical results using simulations on the measured
peering topology of more than 600 ASes.

I. INTRODUCTION

Recent proposals to re-design the Internet with the aim of
facilitating content delivery share the common characteristic that
caches are an integral part of the protocol stack [1], [2], [3]. In
these content-centric networks users generate interest messages
for content, which are forwarded until the content is found in
a cache or the interest message reaches one of the content’s
custodians. The resulting network is often modeled as a network
of interacting caches. Several recent works aimed at optimizing
the performance of a cache network through dimensioning cache
sizes as a function of their location in the cache network [4],
by routing interest messages to efficiently find contents [5] and
by tuning the cache eviction policies used by the individual
caches [6].

Similar to the structure of today’s Internet, a future content-
centric network is likely to be a network of autonomous systems
(AS). ASes are typically profit seeking entities and use an
interior gateway protocol (IGP) for optimizing their internal
routes. Nevertheless, they maintain client-provider and peering
business relations with adjacent ASes [7], and they coordinate
with each other using the Border Gateway Protocol (BGP),
which allows them to exchange reachability information with
their neighbors. The effect of BGP coordination on the stability

and performance of global IP routing has been extensively
investigated, e.g., the negative impact of damping route flaps [8],
[9], the number of updates needed for BGP convergence [10],
and general conditions for cycle-free IP routes [11].

ASes are likely to play a similar role in a future content-
centric Internet as they do today, and thus, instead of a single
cache network dimensioned and managed for optimal global
performance, the content-centric Internet will be a network of
cache networks, each of them optimized for local performance.
To make such a network of cache networks efficient, we need to
understand the potential consequences of interaction between the
individual cache networks in terms of stability and convergence
of the cache contents, and the potential impact of coordination
between the networks of caches.

In this work we consider a network of ASes that maintain
peering agreements with each other for mutual benefit. The
traffic exchanged between the peering AS is not charged, unlike
the traffic that each AS exchanges with its transit provider. The
ASes maintain their own cache networks, and they engage in
content-level peering in order to leverage each others’ cache
contents, which in principle should enable them to decrease their
transit traffic costs. The interaction between the caches could,
however, lead to unforeseen instability and oscillations, as in
the case of BGP. Thus, a fundamental question that one needs
to answer is whether stable and efficient content-level peering
can be implemented without explicit coordination between the
neighboring cache networks. Alternatively, does the interaction
need to rely on explicit announcements of content reachability,
resembling the BGP announcements in today’s Internet, and if
so, is the system going to be stable.

In this paper we address these questions by proposing a
model of the interaction and the coordination between the
caches managed by peering ASes. We show that, with or
without coordination, content-peering leads to stable cache
configurations. Furthermore, we investigate how the convergence
speed and the cost efficiency of the reached cache configuration
are affected by coordination. Finally, we give insight into the
structure of the most likely cache allocations in the case of
inaccurate estimation of the arrival rate of user requests. We
illustrate the analytical results using simulations on the measured
peering topology of more than 600 ASes.

The rest of the paper is organized as follows. In Section II we
describe the system model. In Section III we consider caching
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under perfect information, and in Section IV we consider the case
of imperfect information. In Section V we present numerical
results, and in Section VI we review related work. Section VII
concludes the paper.

II. SYSTEM MODEL

We consider a set N of autonomous ISPs. Each ISP i ∈ N is
connected via peering links to some ISPs j ∈ N . We model the
peering links among ISPs by an undirected graph G = (N,E),
called the peering graph. We call N (i) the set of neighbors
of ISP i ∈ N in the peering graph, i.e. N (i) = {j|(i, j) ∈ E}.
Apart from the peering links, every ISP can have one or more
transit links.

A. Content Items and Caches

We denote the set of content items by O. We follow common
practice and consider that every item o ∈ O has unit size[12],
[13], which is a reasonable simplification if content is divisible
into unit-sized chunks. Each item o ∈ O is permanently stored
at one or more content custodians in the network. We denote by
Hi the set of items kept by the custodians within ISP i. Since
the custodians are autonomous entities, ISP i cannot influence
the set Hi. Similar to other modeling works, we adopt the
Independent Reference Model (IRM) [14], [12], [13] for the
arrival process of interest messages for the items in O generated
by the local users of the ISPs. Under the IRM, the probability
that the next interest message at ISP i is for item o is independent
of earlier events. An alternative definition of the IRM is that
the inter-arrival time of interest messages for item o at ISP i
follows an exponential distribution with distribution function
F oi (x) = 1 − e−woi x, where woi ∈ R+ is the average arrival
intensity of interest messages for item o at ISP i.

Each ISP i ∈ N maintains a network of content caches
within its network, and jointly engineers the eviction policies
of the caches, the routing of interest messages and the routing
of contents via the caches to optimize performance. The set of
items cached by ISP i is described by the set Ci ∈ Ci = {C ⊂
O : |C| = Ki}, where Ki ∈ N+ is the maximum number of
items that ISP i can cache. A summary cache in each ISP keeps
track of the configuration of the local caches and of the content
stored in local custodians, it thus embodies the information about
what content is available within ISP i. We call Li = Ci ∪ Hi
the set of items available within ISP i.

We denote by αi > 0 the unit cost of retrieving an item
from a local cache. We consider that retrieving an item from a
peering ISP is not more costly than retrieving it locally. The
assumption of equal local and peering cost is justified by the
fact that in general, once a peering link has been established,
there is no additional cost for traffic. The traffic on the transit
link is charged by volume with unit cost γi, and we make the
reasonable assumption that γi > αi.

B. Content-peering

Upon receiving an interest message for an item, ISP i consults
its summary cache to see if the item is available locally. If it is,
ISP i retrieves the item from a local cache. Otherwise, before

ISP i would forward the interest message to its transit provider,
it can leverage its neighbors’ caches according to one of two
scenarios.

a) Uncoordinated Content-peering: Without coordination,
if ISP i finds that an item o is not available locally, it forwards
the interest message to all of its neighbors j ∈ N (i). If a
neighbor has the item in cache, it returns the item to ISP i. If
none of the neighbors has the item, ISP i forwards the interest
message to its transit provider.

b) Coordinated Content-peering: In the case of coordina-
tion peering ISPs synchronously exchange information about
the contents of their summary caches periodically, at the end
of every time slot. If, upon an interest message for item o, ISP
i finds that item o is not available locally, it consults its most
recent copy of the summary caches of its peering ISPs N (i). In
case a peering ISP j ∈ N (i) is caching the item, ISP i forwards
the request to ISP j and fetches the content. If not, the interest
message is sent to a transit ISP through a transit link.

Using the above notation, and denoting by C−i the set of
the cache configurations of every ISP other than ISP i, we can
express the cost of ISP i to obtain item o ∈ O as

Coi (Ci, C−i) = woi

{
αi if o ∈ Li ∪Ri
γi otherwise, (1)

where Ri =
⋃
j∈N (i) Lj is the set of items ISP i can obtain

from its peering ISPs. The total cost can then be expressed as

Ci(Ci, C−i) = αi
∑
Li∪Ri

woi + γi
∑

Or{Li∪Ri}

woi , (2)

which is a function of the cache contents of the peering
ISPs N (i).

C. Caching Policies and Cost Minimization

A content item o that is not available either locally or from
a peering ISP is obtained through a transit link, and is a
candidate for caching in ISP i. The cache eviction policy of ISP
i determines if item o should be cached, and if so, which item
p ∈ Ci should be evicted to minimize the expected future cost.
There is a plethora of cache eviction policies for this purpose,
such as Least recently used (LRU), Least frequently used (LFU),
LRFU (we refer to [15] for a survey of some recent algorithms).
We model the eviction decision as a comparison of the estimate
woi of the arrival intensity woi for the item o to be cached and
that for the items p in the cache, wpi .

Perfect information: Under perfect information woi = woi , and
only the items with highest costs Coi (Ci, C−i) are cached.

Imperfect information: Under imperfect information woi is
a random variable with mean woi , and we assume that the
probability of misestimation decreases exponentially with the
difference in arrival intensities, that is, for woi > wpi we have

P (woi < wpi ) ∝ εe
− 1
β (woi−w

p
i ). (3)

This assumption is reasonable for both the LRU and the LFU
cache eviction policies. Under LRU the cache miss rate was
shown to be an exponentially decreasing function of the item
popularity [13]. Under a perfect LFU policy, if we denote the
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interval over which the request frequencies are calculated by
τ , then wpi follows a Poisson distribution with parameter wpi τ .
The difference k = woi τ − w

p
i τ of two estimates thus follows

the Skellam distribution [16] with density function

f(k,woi τ, w
p
i τ) = e−τ(woi+wpi )

(
woi
wpi

)k/2
I|k|(2τ

√
woiw

p
i ),

where I|k|(.) is the modified Bessel function of the first kind.
The probability of misestimation is

∑−1
k=−∞ f(k,woi τ, w

p
i τ),

which decreases exponentially in woi − w
p
i for τ > 0.

III. CONTENT-PEERING UNDER PERFECT INFORMATION

We start the analysis by considering the case of perfect
information, that is, when the cache eviction policies are not
prone to misestimation, and we first consider the case of
coordinated peering.

The key question we ask is whether the profit-maximizing
behavior of the individual ISPs would allow the emergence of
an equilibrium allocation of items. If an equilibrium cannot be
reached then content-peering could potentially lead to increased
costs for the peering ISPs, as shown by the following simple
example in which as a consequence of coordination every
ISP evicts and fetches the same items repeatedly over transit
connections, thereby increasing their traffic costs compared to
no content-peering.

Example 1. Consider two ISPs and O = {1, 2}. Let K1 =
K2 = 1. Without content peering both ISPs cache their most
popular item and forward interest messages to their transit
provider for the least popular item. Their cost is thus Ci =
αiw

hi
i + γiw

li
i , where whii > wlii . With content peering, if the

initial allocation strategies are C1 = C2 = {1}, then the cache
contents of the ISPs will evolve indefinitely as ({1}, {1}) →
({2}, {2})→ ({1}, {1}), etc. The average cost for the ISPs is

thus C ′i = αi

(
w
hi
i +w

li
i

2

)
+ γi

(
w
hi
i +w

li
i

2

)
> Ci.

This simple example illustrates that content peering could
potentially lead to undesired oscillations of the cache contents
of the ISPs, with the consequence of increased traffic costs.
Ideally, for a stationary arrival of interest messages the cache
contents should stabilize in an equilibrium state that satisfies the
ISPs’ interest of traffic cost minimization. In the following we
propose two distributed algorithms that avoid such inefficient
updates and allow the system to reach an equilibrium allocation
of items from which no ISP has an interest to deviate. Such an
allocation is a pure strategy Nash equilibrium of the strategic
game < N, (Ci)i∈N , (Ci)i∈N >, in which each ISP i aims to
minimize its own cost Ci defined in (2).

Definition 1. A cache allocation C∗ ∈ ×i∈NCi is an equilibrium
allocation (pure strategy Nash equilibrium) if no single ISP can
decrease its cost by deviating from it, that is

∀i ∈ N, ∀Ci ∈ Ci : Ci(C∗i , C∗−i) ≤ Ci(Ci, C∗−i) (4)

A. Cache-or-Wait (COW) Algorithm

Example 1 suggests that if one does not allow peering ISPs
to update their cache configurations simultaneously, then they
would converge to an allocation from which neither of them
would have an interest to deviate. In the case of Example 1, such
allocations are ({1}, {2}) or ({2}, {1}). Before we describe the
Cache-or-Wait (COW) algorithm, let us recall the notion of an
independent set.

Definition 2. We call a set I ⊆ N an independent set of the
peering graph G if it does not contain peering ISPs. Formally

∀i, j ∈ I, j /∈ N (i).

We denote by I the set of all the independent sets of the
peering graph G. Consider a sequence of time slots t and a
sequence of independent sets I1, I2, . . . ∈ I indexed by t, such
that for every time slot t ≥ 1 and every ISP i ∈ N there is
always a time slot t′ > t such that i ∈ It′ . At each time slot t
we allow every ISP i ∈ It to update the set of its cached content
Ci. ISP i ∈ It can decide to insert in its cache the items that
are requested by one or more of its local users during time slot
t but were not cached at the beginning of the time slot. At the
same time, ISPs j 6∈ It are not allowed to update the set of
their cached contents. The pseudocode of the COW algorithm
for every time slot t ≥ 1 is then the following:

• Pick It.
• Allow ISPs i ∈ It to change their cached items from
Ci(t− 1) to Ci(t),

• For all j /∈ It, Cj(t) = Cj(t− 1).
• At the end of the time slot inform the ISPs j ∈ N (i) about

the new cache contents Ci(t)

Fig. 1. Pseudo-code of the Cache-or-Wait (COW) Algorithm

What we are interested in is whether ISPs following the COW
algorithm would reach an equilibrium allocation from which
none of them would like to deviate. If COW reaches such an
allocation, then it terminates, and no other cache update will
take place. In the following we provide a sufficient condition
for COW to terminate in a finite number of steps. We call the
condition efficiency, and the condition concerns the changes that
an ISP can make to its cache configuration.

Definition 3. Consider the updated cache configuration Ci(t)
of ISP i ∈ It immediately after time slot t. Define the evicted
set as Ei(t) = Ci(t− 1) \ Ci(t) and the inserted set as Ii(t) =
Ci(t) \ Ci(t− 1). Ci(t) is an efficient update if for any o ∈ Ii(t)
and any p ∈ Ei(t)

Coi (C(t)) + Cpi (C(t)) < Coi (C(t− 1)) + Cpi (C(t− 1)) (5)

The requirement of efficiency is rather reasonable. Given that
the ISPs are profit maximizing entities, it is natural to restrict the
changes in the cache configuration to changes that actually lead
to lower cost. In order to prove that the efficiency condition is
sufficient for COW to converge, we will rely on the generalized
group ordinal potential function defined as follows.
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Definition 4. A function Ψ : ×i(Ci) → R is a
generalized group ordinal potential function for the game
< N, (Ci)i∈N , (Ci)i∈N > if the change of Ψ is strictly positive
whenever an arbitrary subset V ⊆ I ∈ I of ISPs decrease their
costs by changing their strategies,

Ci(C′i, C−i)− Ci(Ci, C−i) > 0, ∀i ∈ V ⇒
Ψ(CV , C−V)−Ψ(C′V , C−V) > 0. (6)

Observe that if we define every independent set to be a
singleton, then the group ordinal potential function Ψ is the
generalized ordinal potential function defined in [17].
We start constructing a generalized group ordinal potential
function by defining the cost saving of ISP i for cache allocation
Ci as Ψi(C) = Ci(∅, C−i)− Ci(Ci, C−i). After substituting (2)
we obtain

Ψi(C) = αi
∑
Hi∪Ri

woi + γi
∑

Or{Hi∪Ri}

woi −

[
αi
∑

Ci∪Hi∪Ri

woi +

+ γi
∑

Or{Ci∪Hi∪Ri}

woi

]
=

∑
o∈Ci\{Hi∪Ri}

[γi − αi]woi . (7)

Note that the value of Ψi(C) is not influenced by any item
o /∈ Ci. We are now ready to prove the following.

Theorem 1. If every ISP performs efficient updates then the
function Ψ : ×i(Ci) → R defined as Ψ(C) =

∑
i∈N Ψi(C)

increases strictly upon every update and COW terminates in
an equilibrium allocation after a finite number of updates.

Proof: We will start by showing that an efficient update
made by any ISP i in the independent set I strictly increases
Ψi and cannot decrease Ψj of any ISP j 6= i, hence Ψ is a
generalized group ordinal potential function for efficient updates.
Without loss of generality, consider the efficient update Ci(t)
made by ISP i ∈ It at time slot t. In the following we show that
Ψj(Ci(t), C−i(t − 1)) ≥ Ψj(C(t − 1)) for all j ∈ N . Observe
that from the definition of Ψi(C) it follows directly that for
ISP i

Ψi(Ci(t), C−i(t− 1)) > Ψi(C(t− 1)).

A) Consider k /∈ N (i). Observe that the cost of ISP k is not a
function of Ci:
• if k /∈ I , ISP k does not make any efficient update at time

slot t, thus Ψk(Ci(t), C−i(t− 1)) = Ψk(C(t− 1));
• if k ∈ I, k 6= i, Ψk is not influenced by Ci.

B) Consider j ∈ N (i). Consider o ∈ Ii(t) and p ∈ Ei(t). From
the cost function defined in (1) it follows that Cpi (t+1) ≥ Cpi (t).
Substituting it in the definition of efficient improvement step in
(5), it follows that Coi (t) > Coi (t+1)⇒ o /∈ Ri(t)⇒ o /∈ Cj(t),
thus Ψj(Ci(t), C−i(t− 1)) is not affected by item o.
Consider now item p:
• If p /∈ Cj(t), then Ψj(Ci(t), C−i(t− 1)) is not affected by

item p.
• If p ∈ Cj(t), then Ψj(Ci(t), C−i(t − 1)) ≥ Ψj(C(t − 1))

(the inequality is strict if p /∈ {Hj ∪Rj(t+ 1)}).

It follows that the function Ψ increases strictly upon every
efficient update. Since ×i(Ci) is a finite set, Ψ cannot increase
indefinitely and COW must terminate in an equilibrium alloca-
tion after a finite number of updates.

The following corollaries are consequences of Theorem 1

Corollary 1. In the case of coordinated peering under perfect
information there is at least one equilibrium allocation.

Corollary 2. If every ISP performs efficient updates then the
number of time slots needed to reach an equilibrium is finite
with probability 1.

Thus, a network of ISPs in which only non-peering ISPs per-
form efficient updates simultaneously at every time slot reaches
an equilibrium allocation after a finite number of updates.

B. Cache-no-Wait (CNW) Algorithm

A significant shortcoming of COW is that in slot t it disallows
ISPs j /∈ It to perform an update. Since the number of
independent sets equals at least χ(G), the chromatic number
of the ISP peering graph, an ISP can perform an update on
average in every χ(G)th time slot, in the worst case once every
|N | time slots. This restriction would provide little incentive for
ISPs to adhere to the algorithm. In the following we therefore
investigate what happens if every ISP in the system is allowed to
perform an efficient update during every time slot. The pseudo-
code of the CNW algorithm for time slot t ≥ 0 looks as follows.

• Every ISP i ∈ N is allowed to change its cached items
from Ci(t− 1) to Ci(t).

• At the end of the time slot ISP i informs the ISPs j ∈ N (i)
about the new cache contents Ci(t)

Fig. 2. Pseudo-code of the Cache-no-Wait (CNW) Algorithm

Theorem 2. If every ISP performs only efficient updates, CNW
terminates in an equilibrium allocation with probability 1.

Proof: Every update of the cache allocation of an ISP is
triggered by an interest message sent by a local user. Consider
now the arrival of interest messages for item o generated by
the local users of ISP i, which has intensity woi . Given that
the distribution F oi of the inter-arrival times is exponential with
parameter woi , there is a non-zero probability e−w

o
i∆ that item

o is not requested during a time slot of length ∆.
Let us consider now a sequence of time slots. For every

ISP i ∈ It there is a positive probability εi(Ci(t − 1)) that
the interest messages generated during time slot t are for
items that are either cached locally, are cached by a peering
ISP or are not popular enough for being cached. If the cache
configuration Ci(t− 1) minimizes ISP i’s expected future cost
with respect to C−i(t− 1), then εi(Ci(t− 1)) = 1. Otherwise,
with probability 0 < εi(Ci(t − 1)) < 1 ISP i does not update
its cache configuration at time slot t, even if in principle its
cache configuration could be improved, because no interest
message arrives for an item o that could improve its cache
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configuration. To summarize, at every time slot t ≥ 1, Ci(t) is
updated according to the following
• Ci(t) = Ci(t− 1) w.p. εi(Ci(t− 1))
• Ci(t) is an efficient update w.p. 1− εi(Ci(t− 1)).

In the following we use an argument similar to the one used
in [18] in order to prove that from every cache configuration C(t)
there is a path to a Nash equilibrium, despite simultaneous cache
updates by peering ISPs.

Consider C(t− 1) at the beginning of time slot t. If C(t− 1)
is not a Nash equilibrium, then there is a non-zero probability
that during time slot t the ISPs that make an update belong to
an independent set It. This probability is lower bounded by∏

i∈It

[1− εi(Ci(t− 1))] ·
∏

i∈NrIt

εi(Ci(t− 1)) > 0,

which is the probability that the ISPs updating their cache
configuration during time slot t are exactly It. By Theorem 1
we know that if in every time slot it is only ISPs that form an
independent set that perform efficient updates, then they reach
a Nash equilibrium after a finite number of steps.
Thus there exists a positive probability p and a positive
integer T such that, starting from an arbitrary global cache
configuration C(t) at an arbitrary time slot t, the probability
that CNW will reach a Nash equilibrium by time slot t + T
is at least p. Consequently, the probability that CNW has not
reached a Nash equilibrium within a time slot t′ is at most
(1− p)

t′
T−1 . Observe that (1− p)

t′
T−1 goes to zero as t′ →∞,

and this proves the theorem.

C. Uncoordinated Content-peering

Let us consider now the case of uncoordinated content peering
under perfect information. Recall that in this case ISP i does not
receive information from ISPs j ∈ N (i) about the contents of
their caches. As long as an item is cached at ISP i, that is, o ∈ Ci,
the ISP would not forward interest messages to ISPs j ∈ N (i),
and thus it would not know if o is cached at its neighbors. When
ISP i receives an interest message for an item o 6∈ Ci, it would
have to discover whether ISPs j ∈ N (i) have item o in their
cache by forwarding an interest message to every ISP j ∈ N (i).
Every discovery of the cache contents of the neighboring ISPs
is thus triggered by a cache miss at ISP j. If o /∈ Ri, it has to
be retrieved over a transit link, and hence ISP i can cache it
by evicting an item p ∈ Ci if wpi < woi . Observe that any cache
allocation in which no future request can trigger a change is a
stable cache allocation under uncoordinated content-peering

Definition 5. Ci is a stable cache allocation for uncoordinated
content peering if, ∀i ∈ N and ∀o, p ∈ O

p ∈ Ci, o /∈ {Li ∪Ri} ⇒ wpi > woi .

For example, the cache allocation where every ISP i ∈ N is
caching the Ki items with highest arrival intensities woi , is a
stable allocation for the case of uncoordinated content peering.
There can be many other stable allocations, as shown by the
following proposition.

Proposition 3. Every equilibrium allocation under coordinated
content-peering is a stable allocation under uncoordinated
content-peering.

Proof: Consider the equilibrium allocation C under coordi-
nated content-peering. Assume that an interest message for item
o ∈ O arrives at ISP i. If o ∈ {Li ∪Ri}, then ISP i retrieves
item o locally or from a peering ISP and its cache configuration
does not change. If o /∈ {Li ∪ Ri}, then ISP i retrieves item
o through a transit link. Let us assume that o is then inserted
by ISP i in place of item p ∈ C, meaning that C is not a stable
allocation under uncoordinated content-peering, and woi > wpi .
Since o /∈ Ri(t), we know from (2) that

Coi (C) = γiw
o
i > Coi (C′) = αiw

o
i (8)

Similarly, since p ∈ Ci we have that Cpi (C) = αiw
p
i . Now

consider the following two cases:
• p ∈ Ri(t), then Cpi (C′) = Cpi (C) = αiw

p
i .

• p /∈ Ri(t), then Cpi (C′) = γiw
p
i .

Putting these together we obtain

Coi (C′) + Cpi (C′) < Coi (C) + Cpi (C), (9)

which means that, by Definition 3, C′i is an efficient update. Since
ISP i was able to make an efficient update in cache configuration
C, it follows that C could not have been an equilibrium allocation
under coordinated content-peering, which contradicts our initial
assumption. This proves the proposition.

We can easily show that the converse is not true: the cache
allocation ({1}, {1}) in Example 1 is not an equilibrium
allocation under coordinated content-peering, but since w1

i > w2
i ,

no ISP will insert item 2 in its cache under uncoordinated peering
and thus it is a stable allocation.

Given a stream of interest messages and perfect information, in
the following we address whether caching without coordination
converges to a stable allocation. For the analysis, we define the
instantaneous download (ID) assumption, under which after a
cache miss the file is instantaneously downloaded into the cache,
before another interest message could arrive. The ID assumption
is common practice in the caching literature [12], [13], and as
we show, it allows fast convergence to a stable allocation.

Proposition 4. Under the ID assumption uncoordinated peering
reaches a stable cache allocation after a finite number of cache
updates.

Proof: Consider an arbitrary cache update of ISP i ∈ N .
Consider an interest message that arrives for object o /∈ {Li ∪
Ri}, and assume that ISP i updates its cache configuration from
Ci to C′i inserting item o in place of item p. Recall from the
proof of Proposition 3, that C′i is an efficient update. The ID
assumption guarantees that ISP i is the only ISP that updates its
cache configuration in this time instant. Therefore we know from
Theorem 1 that the global function Ψ : ×i(Ci) → R strictly
increases at every cache update. Since ×i(Ci) is a finite set, Ψ
cannot increase indefinitely and a stable allocation is reached
after a finite number of updates. This proves the proposition.
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With the ID assumption uncoordinated peering converges
in a finite number of updates, similar to CoW. Without this
assumption the convergence is much slower.

Proposition 5. Without the ID assumption uncoordinated
peering reaches a stable cache allocation with probability one.

Proof: Given that the arrival processes of the interest
messages at different ISPs are independent, there is a positive
probability ε > 0 that at some point in time ISP i is the only ISP
that needs to update its cache, and that it can do so before another
interest message arrives. Following the same arguments as in
the proof of Theorem 2, it can be shown that the probability of
reaching a stable cache allocation after t time units approaches 1
when t→∞.

We have thus far shown that under perfect information both
coordinated and uncoordinated content-peering will lead to
equilibrium, alternatively stable cache allocations. We now turn
to the case of imperfect information.

IV. THE CASE OF IMPERFECT INFORMATION

Until now we assumed that following a cache miss, when ISP i
has to decide whether to cache item o it has a perfect estimate
of the arrival intensity woi of every item, and thus it is always
able to evict one of the least popular items. In the following we
consider that the estimation of the item popularities is imperfect.
We consider COW throughout the section for two reasons. First,
under the ID assumption uncoordinated content-peering behaves
very similar to COW. Second, the set of equilibria under COW
coincides with those under CNW.

Under imperfect information the system can not settle in any
single equilibrium or stable allocation, unlike in the case of
perfect information. Nevertheless, the cache allocations that are
most likely to occur are not arbitrary, and in the following we
show that it is possible to characterize them.

We model the evolution of the system state (the set of
cached items) under imperfect information by a regular perturbed
Markov process. Consider first the case of coordinated peering
under perfect information and the COW algorithm. For the
following analysis we can restrict ourselves to the case that each
independent set I is a singleton. The evolution of the system
state can be modeled by a Markov chain P 0; the transition
probability between states C and C′ is non-zero if and only if
C′ = (C′i, C−i) for some i such that the update Ci to C′i by ISP i
is an efficient update. Observe that the Markov chain P 0 is not
irreducible, as every equilibrium state is an absorbing state. We
refer to this chain as the unperturbed process.

Consider now coordinated peering under imperfect informa-
tion. Under imperfect information the probability that item o
will be evicted and item p inserted even though woi > wpi is
non-zero as given in (3). The resulting Markov process P β is a
regular perturbed Markov process of P 0 [19], because for every
β > 0 it is irreducible and for every C and C′, P β converges to
P 0 at an exponential rate, limβ→0 P

β
C,C′ = P 0

C,C′ . Furthermore,
if P βC,C′ > 0 for some β > 0 then for some r(C, C′) ≥ 0

lim
β→0

e
1
β r(C,C

′) · P βC,C′ = ε > 0. (10)

We refer to r(C, C′) ≥ 0 as the resistance of the transition from
allocation C to C′. The resistance is 0 if there is a transition
in the unperturbed Markov process. Since P β is an irreducible
aperiodic finite Markov process, it has a unique stationary
distribution for β > 0. We now recall a result from Young [19].

Lemma 1 (Young [19]). Let P β be a regular perturbed Markov
process, and let µβ be the unique stationary distribution of P β

for each β > 0. Then limβ→0 µ
e
− 1
β

= µ0 exists, and µ0 is
a stationary distribution of P 0. The domain of µ0 is a non-
empty subset of the absorbing states of the unperturbed Markov
process.

By Lemma 1 there is thus a stationary distribution µ0 of the
unperturbed process such that, for small β, the system will likely
be in a state in the domain of µ0. In the rest of the section
we try to infer what cache allocations are most likely to occur
in the following scenario. Consider a set of N = {1, . . . , |N |}
ISPs, and items O = {1, . . . , |O|}. Let ρi(o) be the rank in
terms of popularity of item o in ISP i, and let Ti be the set of
the Ki items such that ρi(o) ≤ Ki. For a cache allocation C
denote by h(C) the number of items o such that o is cached by
an ISP i but ρi(o) > Ki.
We consider that the items with highest arrival intensity are the
same among the different ISPs, and we denote them by the set
T =

⋃
i Ti. We start by investigating the cache allocations that

are most likely to occur in the case of disjoint interests. In this
case the Ki items with highest arrival intensity of the ISPs form
disjoint sets, namely Ti ∩ Tj = ∅, for all i 6= j ∈ N . We will
first show the following

Lemma 2. Let C∗ be the allocation in which every ISP caches
its most popular items, namely C∗i = Ti. For any absorbing
state C′ such that h(C′) > 2, there exists an absorbing state C′′
such that h(C′′) = 2 and r(C∗, C′′) < r(C∗, C′).

Proof: Let S be the path with least resistance from C∗ to C′.
Observe that, since C∗i = Ti, at least h(C′) mistakes are needed
to reach C′. Denote by i the first ISP that makes a mistake
in S , and by o and q the mistakenly evicted and inserted items,
respectively. Since S is the path with least resistance, there
exists j ∈ N (i) that makes at least one mistake. Consider the
first mistake of ISP j and call p and r the evicted and inserted
item, respectively. Observe that o, p ∈ Ti ∪ Tj . We will now
show that these two mistakes are enough to reach the absorbing
state C′′ defined as C′′j = C∗j r {p}∪{o}, C′′i = C∗i r {o}∪{p},
C′′h = C∗h ∀h ∈ Nr{i, j}, and hence r(C∗, C′′) < r(C∗, C′). Let
us start from C∗ and consider the state reached after committing
the two mistakes. Observe that, since q /∈ Ti ∪Tj , then ρi(p) <
ρi(q). Furthermore we know that there is no ISP h 6= j, such
that p ∈ C∗h. Hence ISP i can evict q and insert p without
making a mistake. If r = o then we reached C′′. If r 6= o then,
following the same argument, ISP j can insert o and evict r
without making a mistake, reaching C′′.

We will now use Lemma 2 to prove the following

Proposition 6. If Ti ∩ Tj = ∅ for all i 6= j ∈ N , then
lim 1

β→∞
P (C(t) = C∗) = 1.



7

o,p p,o

X,p o,Y p,Y X,o

X,Y

2

2 1

1

21

22
1 1

Fig. 3. State transition diagram of the unperturbed
Markov process (solid lines). (o, p) and (p, o) are
absorbing states in the unperturbed Markov process,
but only the equilibrium (o, p) is the domain of µ0.
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Fig. 4. Average number of iterations needed to reach
an equilibrium allocation as a function of the time
slot duration ∆ for three different peering graphs
and algorithms COW and CNW.
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Fig. 5. Average time needed to terminate as
a function of the time slot duration ∆ for three
different peering graphs and algorithms COW and
CNW.

Proof: As a consequence of Lemma 2 it is sufficient to
show that for every absorbing state C′′ such that h(C′′) = 2, it
holds that r(C∗, C′′) > r(C′′, C∗). For brevity define C′′ as in
the proof of Lemma 2. Assume, w.l.o.g., that in the path with
least resistance from C∗ to C′′, ISP i makes a mistake before
ISP j by inserting item q /∈ Ti ∪ Tj in place of item o . Then
r(C∗, C′′) > woi −w

q
i . Observe now that, since q /∈ Ti∪Tj , from

the absorbing state C′′ the mistake of ISP i of evicting item p
and inserting q, with resistance wpi −w

q
i , is enough to reach C∗.

Hence r(C′′, C∗) ≤ wpi − w
q
i . This proves the Proposition.

The following illustrates the proof on a simple example.

Example 2. Consider a complete graph and Ki = 1. The |N |
most popular items are the same in every ISP, but item o has a
distinct rank at every ISP. In every equilibrium the |N | most
popular items are cached, one at every ISP, and thus there
are |N |! equilibria. Fig 3 shows the state transition diagram of
the unperturbed Markov process (with solid lines) for the case
of two ISPs, |N | = 2. The figure only shows the transitions
between states. X and Y stand for an arbitrary item other than
o and p, and the states (p, Y ) and (X, p) ((o, Y ) and (X, o))
represent all states in which item p (item o) is cached by ISP
1 and ISP 2, respectively. The dashed lines show transitions
due to mistakes that are needed to move from one equilibrium
to a state from which both equilibria are reachable (there
is a positive probability of reaching it) in the unperturbed
process. These transitions only exist in the perturbed Markov
process. With perfect information there are two equilibrium
allocations, which are the absorbing states (o, p) and (p, o) of
the unperturbed process. The two equilibrium allocations are,
however, not equally likely to be visited by the perturbed process.

Observe that in the unperturbed process, equilibrium (o, p)
is reachable from every allocation except from equilibrium
(p, o). Therefore, in the perturbed process one mistake suffices
to leave equilibrium (p, o) and to enter a transient state of the
unperturbed process from which both equilibria are reachable in
the unperturbed process. It takes, however, two mistakes in close
succession to leave equilibrium (o, p) and to enter a transient
state of the unperturbed process from which both equilibria
are reachable in the unperturbed process. As β decreases, the
probability of two successive mistakes decreases exponentially

faster than that of a single mistake, and thus the perturbed process
will be almost exclusively in state (o, p), thus C∗ = (o, p).

A similar reasoning can be used to get insight into the
evolution of the system state in the case that the ranking of
the items is the same among all ISPs, namely Ti = Tj for all
i, j ∈ N . As an example, we show the following.

Proposition 7. If the arrival intensity woi for an item o for
which ρi(o) ≤ Ki increases at ISP i, then limβ→0 P (o ∈ Ci(t))
increases.

Proof: Consider the state transition diagram of the perturbed
Markov process P β . For a state C for which o ∈ Ci, the transition
probability that corresponds to ISP i mistakenly evicting o
decreases. For a state C for which o 6∈ Ci, the transition
probability to the states C′ for which o ∈ C′i increases, and
the transition probability to other states decreases. Reconciling
these changes with the global balance equation for the set of
states {C|o ∈ Ci} proves the proposition.

The impact of the number of peers of an ISP and that of the
amount of storage Ki can be analyzed similarly, but we omit
the analysis due to lack of space.

V. NUMERICAL RESULTS

In the following we show simulation results to illustrate the
analytical results of Sections III and IV for COW and CNW.

A. Perfect Information

Figures 4 and 5 show the average number of iterations and the
average time the algorithms COW and CNW need to terminate
as a function of the time slot duration ∆, respectively. We
report results for three different peering graphs. The CAIDA
graph is based on the Internet AS-level peering topology in
the CAIDA dataset [20]. The dataset contains 36878 ASes and
103485 transit and peering links between ASes as identified
in [21]. The CAIDA graph is the largest connected component
of peering ASes in the data set, and consists of 616 ISPs with
measured average node degree of 9.66. The Erdős-Rényi (ER)
and Barabási-Albert (BA) random graphs have the same number
of vertexes and the same average node degree as the CAIDA
graph. For the COW algorithm, we used the Welsh-Powell
algorithm to find a coloring [22] of the peering graph. We used
αi = 1, γi = 10 and cache capacity Ki = 10 at every ISP.
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Each ISP receives interest messages for |O| = 3000 items. The
arrival intensities woi follow Zipf’s law with exponent 1, and for
all i ∈ N it holds

∑
o∈O w

o
i = 1. Each data point in the figures

is the average of the results obtained from 40 simulations.
Figure 4 shows that the number of iterations the COW

algorithm needs to reach an equilibrium allocation monotonically
decreases with the time slot length. The longer the time slots,
the more interest messages the ISPs receive within a time slot.
This enables the ISPs to insert more highly popular objects per
iteration. Furthermore, since only ISPs in an independent set can
make updates at each iteration, simultaneous cache updates like
the ones shown in Example 1 cannot occur. Consistently, the
total time needed for the COW algorithm to converge, shown
in Figure 5, remains constant independent of the slot length ∆.

The CNW algorithm exhibits significantly different behavior
for long time slots, as the number of iterations needed to termi-
nate increases compared to the COW algorithm. This happens
because using the CNW algorithm a higher number of arrivals
per time slot leads to a higher number of simultaneous updates,
which disturb convergence. Figure 4 shows that simultaneous
updates are most likely to occur in ER graphs. In BA graphs
simultaneous updates would occur mainly among the few nodes
with high degree, and since most ISPs have low node degree, the
CNW algorithm would converge faster than on ER graphs. For
the same reason, for small time slots when simultaneous updates
are unlikely to occur, both the COW and CNW algorithms
perform best on the Erdős-Rényi random graph. From Figure 5
we notice that, as expected, the time for the CNW algorithm
to terminate starts to increase with high values of the slot
length. This increase is fast for the ER graph due to the higher
occurrence of simultaneous updates, as we discussed above.

Figure 6 shows the number of items inserted in cache (po-
tentially several times) for the two algorithms until termination
divided by the minimum number of items needed to be inserted
to reach the same equilibrium. We refer to this quantity as
the inefficiency of updates. While the inefficiency of the COW
algorithm decreases slowly with the time slot length, that of the
CNW algorithm shows a fast increase for high values of ∆, in
particular for the ER and the BA graphs, which can be attributed
to the simultaneous updates under CNW. These results show
that although CNW would be more appealing as it allows ISPs

to update their cache contents all the time, COW terminates
significantly faster and is more efficient.

B. Imperfect Information
In the following we show results for the case when the

estimation of the items’ arrival intensities is imperfect. We
consider that every ISP estimates the arrival intensities of the
items by counting the number of arrivals under a period of τ
seconds. As in the case of imperfect information the COW
algorithm would never terminate, we collected the statistics on
the permanence of the various items in the cache of each ISP
over 105 time slots. We considered 50 ISPs and a time slot
of 70 seconds, which in the case of perfect information would
guarantee a fast termination of the COW algorithm. We first
validate Proposition 6 for the case of Ki = 1, hence we consider
that the item with the highest arrival intensity is different at
every ISP. Figure 7 shows the average relative permanence in the
ISPs’ caches of the three items with highest arrival intensity, as
a function of the estimation interval τ , for three random peering
graphs. The results show that the probability of caching the item
with highest arrival intensity approaches 1 when τ increases,
and thus validate Proposition 6. Furthermore we observe that
the probability of caching items with lower arrival intensities
decreases exponentially with τ .

In the next scenario we start from the setting described in
Proposition 7, where the ranking of the items’ intensities is
the same among all ISPs. We scale the arrival intensity wo1
of every item o at ISP 1 by the same factor, while keeping
the intensities at the other ISPs constant. Figure 8 shows the
average relative permanence in ISP 1’s cache of the three items
with highest arrival intensities as a function of w1. The results
confirm that a higher w1 leads to a higher relative permanence
in the ISP’s cache of the items with highest arrival intensity.
Concerning the influence of the peering graph, the figure shows
a constantly lower permanence of the best items for the BA
graph with higher average node degree. This is due to that with
a higher number of peering links the probability that the best
items are in a peering ISP’s cache gets higher.

VI. RELATED WORK

There is a large variety of cache eviction policies from
Least recently used (LRU) to the recent Adaptive replacement
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cache [15]. Most analytical work on the performance of cache
eviction policies for stand-alone caches focused on the LRU
policy [23], [24], [13]. An iterative algorithm for calculating
the cache hit rate was proposed in [23], closed-form asymptotic
results were provided for particular popularity distributions
in [24] and recently in [13]. These works considered stand-
alone caches.

The cache hit rate for cache hierarchies was investigated in
the context of web caches and content-centric networks [25],
[26], [27], [28]. General topologies were considered for content-
centric networks [4], [12], [6]. An iterative algorithm to approx-
imate the cache miss rate in a network of caches was proposed
in [12]. The authors in [4] considered various network topology-
aware policies to improve the overall cache hit rate in a network
of caches. In [6] the authors probabilistic caching to increase
the cache hit rate in a network of caches. These works consider
that the caches route requests irrespective of the associated
traffic costs, and assume a single network operator with a single
performance objective. In our work we account for the profit
maximizing behavior of individual network operators and model
the resulting interaction between caches.

Replication for content delivery in a hierarchy of caches was
considered recently in [29], [30]. The authors in [29] considered
a centralized algorithm for content placement, while distributed
algorithms were analyzed in [30]. A game theoretical analysis
of equilibria and convergence for the case of replication on an
arbitrary topology was provided in [31]. Opposed to replication,
we consider an arbitrary topology of caches, and we consider
that caches do not follow an algorithm engineered for good
global performance but they follow their individual interests.

To the best of our knowledge ours is the first work that
considers a network of selfish caches, including the effects
of evictions, and provides a game-theoretical analysis of the
resulting cache allocations.

VII. CONCLUSION

We proposed a model of the interactions between the caches
managed by peering ASes in a content-centric network. We used
the model to investigate whether peering ASes need to coordinate
in order to achieve stable and efficient cache allocations in
the case of content-level peering. We showed that irrespective
of whether the ISPs coordinate, the cache allocations of the
ISPs engaged in content-level peering will reach a stable state.
However, in order for the resulting stable cache configurations to
be efficient in terms of cost, the ASes would have to periodically
exchange information about the content of their caches. If
fast convergence to a stable allocation is important too then
synchronization is needed to avoid simultaneous cache evictions
by peering ISPs. Furthermore, we showed that if the content
popularity estimates are inaccurate, content-peering is likely to
lead to cost efficient cache allocations, and we gave insight into
the structure of the most likely cache allocations.
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