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ABSTRACT
Multi-camera visual sensor networks (VSNs) require large
computational resources in order to perform visual analysis
in real-time. One way to match the computational needs is to
augment the VSN with dedicated processing nodes that do in-
network processing, but this requires careful allocation of loads
from the sensor nodes in order to ensure low processing times.
In this paper we formulate the problem of load allocation and
completion time minimization in a VSN as an optimization
problem. We propose a distributed algorithm for load alloca-
tion, and evaluate its performance in terms of completion time
and convergence compared to a Greedy algorithm. Simulations
show that the proposed algorithm converges faster, but at the
cost of increased completion times. Nonetheless, combined
with appropriate coordination, the proposed algorithm achieves
low completion times at low complexity.

Index Terms— Visual feature extraction, Sensor networks,
Divisible load theory, Distributed optimization

1. INTRODUCTION

Real-time visual analysis in visual sensor networks (VSNs)
typically requires large computational capacity in order to
perform the visual processing tasks within the specified time
limit. As shown in [1], significant delay is incurred both when
processing is performed at the sensor nodes, and when images
are transmitted across the network to a central processing node.
Transmitting the images across the network may also drain the
energy resources of nodes relaying the images. As low cost
sensor nodes are becoming available, introducing dedicated
processing nodes for distributed in-network processing has
been proposed to increase the computational capacity available
to the sensor nodes [2, 3].

Visual analysis involves several processing steps. First, a
detection filter is applied at every pixel of an image in order to
determine whether the pixel is an interest point or not. Second,
for each detected interest point, a feature descriptor is extracted
based on the region surrounding the interest point (examples
include [4, 5, 6, 7, 8]). The set of feature descriptors can then
be used to perform the application task, e.g. object recognition,
or tracking. By dividing the image into multiple sub-areas,
the interest point detection and feature extraction tasks can be
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divided among the processing nodes, this method is referred
to as area-split in [9]. To achieve the best performance, the
size and allocation of the sub-areas must be chosen so as to
minimize the completion times of the processing nodes, which
is achieved when all processors finish at the same time [10].
However, as the number of interest points detected in an im-
age, as well as their spatial distribution, depends both on the
parameters of the applied detection method, and on the visual
contents of the image, which is not known a priori, the com-
pletion times of the processing nodes can not be determined
solely based on the size of the sub-area assigned to the node.
Additionally, if multiple sensors are sharing a set of process-
ing nodes, they will compete for the use of those processing
nodes. Considering the randomness of the visual content, as
well as the interaction of the sensor nodes, creating efficient
distributed algorithms for completion time minimization of
distributed processing tasks in VSNs is a challenging task.

In this paper we address the completion time minimization
problem in a VSN equipped with multiple visual sensor nodes
and processing nodes. We propose a coordinated and a fully
distributed algorithm for assigning sub-areas to processing
nodes,and we prove convergence of the proposed algorithm
for the scenario when only one sensor updates its allocation
at a time. We use simulations to evaluate the performance and
complexity of the algorithm in comparison to a Greedy algo-
rithm based on a surveillance video trace. Our results show
that the proposed algorithm converges to a stable allocation
faster than the Greedy algorithm, but results in slightly higher
completion times. For the scenario where sensors are not al-
lowed to converge upon each frame, but can only make a single
update, the completion time can be decreased by coordinating
the assignments of the sensor nodes .

The rest of the paper is organized as follows. In Section 2
we describe the considered system and in Section 3 we formu-
late the problem of completion time minimization. In Section 4
we present and analyze algorithms for solving the completion
time minimization problem. In Section 5 we present numerical
results and we conclude the paper in Section 6.

2. SYSTEM MODEL

Our system model is similar to that in [11]. We consider a
visual sensor network (VSN) consisting of a set of sensor nodes
S , |S| = S, and a set of processing nodesN , |N | = N . Sensor
node s ∈ S captures a sequence Is = {1, ...} of images of
width w pixels. For the delegation of the computation, sensor
node s divides image i into V is ≤ N vertical slices. This



scheme was referred to as area-split in [12, 9]. We define
slice v using its normalized leftmost and rightmost horizontal
coordinates, xis,v−1 and xis,v, i.e., xis,0 = 0 and xis,V i

s
= 1,

and we define the cutpoint location vector for image i as xis =
{xis,0, . . . , xis,V i

s
}. For convenience, we use yis,v = xis,v −

xis,v−1 to denote the normalized width of slice v, and we define
yis,v = 0 for v ≤ 0 and for v > V is . Thus, by definition,∑V i

s
v=1 y

i
s,v = 1. Sensor s transmits slice 1 ≤ v ≤ V is to

processing node dis(v) ∈ N for processing. We define dis as a
sequence of |dis| = V is distinct elements, and with slight abuse
of notation we use n ∈ dis if dis(v) = n for some 1 ≤ v ≤ V is ,
i.e., node n is used by sensor s. We use the notation

di
s(n) for

the slice that sensor s assigns to node n. We refer to dis as the
assignment by sensor s, and to

di
s as its inverse.

2.1. Visual feature extraction

Each processing node n computes local visual features from
the image slices assigned to it. The computation of local fea-
tures starts with interest point detection in an image, by ap-
plying a blob detector or an edge detector at every pixel of
an image [6, 7, 8]. For each pixel, the detector computes a
response score based on a square area centered around it. We
denote the side length of the square normalized by the width of
the image by 2o. The side length 2ow of the square (in pixels)
depends on the applied detector. Therefore, for correct opera-
tion, each slice v transmitted to processing node n has to be
appended on one or both sides by an overlap area of width o.

The time it takes to detect interest points can be modeled
as a linear function of image size in pixels and of the number
ξis,v = fi(x

i
s,v, x

i
s,v−1) of interest points detected; this model

was validated recently in [1, 2]. We can thus model the detec-
tion time for slice v from sensor s at processing node n as a
function of the image slice width yis,v and of the number ξis,v of
interest points detected in the image slice as an affine function
Pn(yis,v + αfξ

i
s,v), where Pn is the per unit processing time

of node n. Note that ξis,v is unknown before processing image
slice v, but efficient low-complexity predictors exist, such as
the last value predictor [2].

After detection, a feature descriptor is extracted for each
interest point by comparing pixel intensities. The time it takes
to extract the descriptors can be modeled as a linear function of
the number ξis,v of interest points detected, as shown in [2]. We
can thus model the detection and extraction time as Pn(yis,v +

(αf +αe)ξ
i
s,v) = Pn(yis,v +αdξ

i
s,v). We consider that αf , αe

and thus αd are the same for all processing nodes, which is
reasonable if the nodes have a similar computer architecture
(e.g., instruction set).

In applications where features extracted from images cap-
tured by multiple cameras are needed, e.g., in the case of multi-
camera tracking for updating a hidden-Markov model or a par-
ticle filter, the extraction of the features from all images should
finish at the same time. We thus consider that if a processing
node n has to process image slices from different sensors si-
multaneously, then it allocates its processing power in a way
that ensures that the processing of all slices is completed at the
same time.

Fig. 1: Transmission and processing schedule of slices from a
single sensor to three processing nodes. ’R’ stands for receiv-
ing the image slice, ’P’ for processing, and ’W’ for waiting.

2.2. Communication Model
The nodes communicate using a wireless communication pro-
tocol, such as IEEE 802.15.4 or IEEE 802.11, in which trans-
missions suffer from packet losses due to wireless channel
impairments. As measurement studies show [13, 14], the loss
burst lengths at the receiver have low mean and variance in
the order of a couple of frames [15], [16]. Therefore, a widely
used model of the loss process is a low-order Markov-chain,
with fast decaying correlation and short mixing time. In the
system we consider, the amount of data to be transmitted to
the processing nodes is relatively large, and therefore it is rea-
sonable to model the average transmission time from sensor
s to processing node n as a linear function of the amount
of transmitted data. We denote the transmission time coef-
ficient by Cs,n, which can be interpreted as the average per
image transmission time, including potential retransmissions.
As the throughput is close to stationary over short timescales,
Cs,n can be estimated [17]. When there are several sensors
transmitting data, the MAC protocol provides airtime fairness
for the transmitters [18], thus the actual transmission time
coefficient is proportional to the number of sensors transmit-
ting. For example, when there are S sensors transmitting, the
actual transmission time coefficient is SCs,n. Motivated by
the rapid increase of 802.11 wireless transmission capacities,
we consider that processing is slower than transmission, i.e.,
minnPn(1 + αd) ≥ Smaxs,n Cs,n, and thus processing an
image slice takes at least as much time as receiving it.

The processing nodes can receive data and perform pro-
cessing simultaneously. Thus, a processing node can start pro-
cessing slice v from sensor s after it has received o (for v = 1)
and 2o (for 1 < v ≤ V is ) worth of data. The resulting regions
of overlap in adjacent slices could in principle be transmitted
in multicast to the appropriate processing nodes, but experi-
mental results show that multicast transmission suffers from
low throughput in practice due to lack of link layer retransmis-
sions and missing channel quality information [19], we thus
consider that all data transmissions are done using unicast.

3. COMPLETION TIME AND PROBLEM
FORMULATION

Using the model of transmission and processing above, let us
consider the completion time of the processing of image i ∈ Is
captured by sensor s. Figure 1 illustrates the transmission and
processing of slices to N = 3 processing nodes. Let us denote



by tbs,v(x
i,di) the time instant when processing node dis(v)

receives the first bit of slice v from sensor s, by tps,v(x
i,di)

the time instant when processing of slice v from sensor s starts
at processing node dis(v) (i.e., after receiving the overlap),
by trs,v(x

i,di) the time instant when processing node dis(v)

receives the last bit of slice v from sensor s, and by tcs,v(x
i,di)

the time instant when processing of slice v from sensor s is
completed at processing node dis(v). If not otherwise specified,
we use the shorthand trs,v to refer to trs,v(x

i,di).
Observe that the time trs,v − tbs,v it takes node s to transmit

slice v to processing node n depends on the number of sensor
nodes that are transmitting simultaneously. To capture the
dependence of the transmission time on the sensors’ cutpoint
location vectors (xis)s∈S and assignment functions (dis)s∈S ,
we define the experienced transmission time coefficient

C̃s,n(xi,di) =

{
(trs,v − tbs,v)/(yis,v + o) for v = 1, V is
(trs,v − tbs,v)/(yis,v + 2o) for 1 < v < V is .

Similarly, the time it takes processing node n to complete
the processing of slice v sent by sensor s depends on whether or
not the processing node has to process slices from other sensors
simultaneously. We define the experienced processing time
coefficient of sensor s at processing node n as P̃s,n(xi,di) =
(tcs,v − tps,v)/(yis,v + αdξ

i
s,v).

We can express the mean completion time of slice v dele-
gated by sensor s to processing node n = dis(v) as a function
of the experienced transmission time coefficients and of the
experienced processing time coefficients. For the first slice,
i.e., n = dis(1), we have

T is,n(xi,di) = C̃s,n(xi,di)o+ P̃s,n(xi,di)(yis,1 + αdξ
i
s,1).

(1)
For the remaining slices, i.e.,n = dis(v), v > 1, the completion
time depends also on the transmission times of previous slices

T is,n(xi,di) = C̃s,dis(1)(x
i,di)[yis,1 + o] + C̃s,n(xi,di)2o

+
∑v−1
ν=2C̃s,dis(ν)(x

i,di)[yis,ν + 2o]

+ P̃s,n(xi,di)(yis,v + αdξ
i
s,v). (2)

Finally, we define the completion time of image i for sensor
s as the completion time of the processing node that finishes
last

T is(x
i,di) = max

n∈dis
(T is,n(xi,di)). (3)

Observe that the maximum is taken only over the processing
nodes used by sensor s.

3.1. Completion Time Minimization
Given the set of sensor nodes S , the set of processing nodesN ,
the transmission and processing time coefficients Cs,n and Pn,
we can formulate the problem of minimizing the completion
time for image i as a combinatorial optimization problem

min
(xi,di)

t s.t. (4)

T is(x
i,di) ≤ t ∀s ∈ S (5)

xis,v−1 − xis,v ≤ −o 1 ≤ v ≤ V is (6)

xis,vw ∈ {1, . . . , w} 1 ≤ v ≤ V is (7)

where w is the width of the image in pixels. Observe that the
sensors may not have sufficient information to solve the opti-
mization problem, e.g., because the interest point distribution
is unknown before processing an image. Nonetheless, as the in-
terest point distribution changes slow enough an approximate
solution can be obtained using the interest point distribution
of the previous image.

Solving the optimization problem is, however, com-
putationally demanding, as it requires one to consider all∑N
n=1

N !
(N−n)! profiles of partial permutations (dis)s∈S , and

for each profile find the optimal allocation vector xi. Thus,
given the computational constraints in the sensors it may be
infeasible to solve even moderate instances of the problem.

We thus consider that there is an entity, e.g., in a mobile
edge-cloud, that has sufficient computational resource for com-
puting the optimal assignment d̄ and and can communicate it
to the sensor nodes periodically. Whether or not this entity is
used by the VSN determines the operation mode of the VSN.

Definition 1. VSN Operation Mode: In the un-coordinated
assignment mode each sensor s is allowed to update (dis, x

i
s)

upon each frame i. In the coordinated assignment mode, the
assignment d̄ is periodically computed by a central entity, e.g.,
a cloud-based resource, after every R frames and is communi-
cated to the sensors; the sensors can update (xis) only. We refer
to R as the inter-refresh time under coordinated assignment.

4. DISTRIBUTED ALGORITHMS

In the following we describe a fully distributed algorithm for
computing the sub-area allocations of the sensors to processing
nodes, based on information they can obtain via measurements
and through signaling.

We refer to the times when the sensors can revise their
allocations as the revision opportunity, which can be either
synchronous or asynchronous.

Definition 2. Revision opportunity: Under asynchronous re-
vision only one sensor s ∈ S is allowed to update its allocation
upon each image i. Under synchronous revision every sensor
is allowed to update its allocation upon every image i.

While in a VSN synchronous revision is easy to imple-
ment, asynchronous revision could, e.g., be implemented by
configuring a static revision order through modulo division of
the image sequence number.

In Fig. 2 we describe a distributed algorithm that allows
each sensor s to update its allocation if doing so does not in-
crease the sensors’ transmission times, called the Transmission
Time Preserving (TTP) algorithm. The set of sensors that are
allowed to update their allocation upon image i are denoted by
Di ⊆ S . Observe that |Di| = 1 for asynchronous and Di = S
for synchronous revision opportunities, respectively.

Observe that (tb
s′,

di
s′ (n)
−tr

s′,

di
s′ (n)

) is a known linear func-

tion of yi
s′,

di
s′ (n)

and of the transmission time coefficientCs′,n,

and thus every sensor s can compute Cs′,n for n ∈ dis′ . The
sensors can also compute the time tp

s′,

di
s′ (n)

for every process-
ing node n.



Upon image i:

1. Each sensor s ∈ Di computes allocation (x′s, d
′
s) s.t.

(x′s, d
′
s) = arg min

(xs,ds)

Ts((xs,x
i
−s), (ds,d

i
−s)) (8)

2. Each sensor s ∈ Di revises its assignment from (xis, d
i
s)

to (xi+1
s , di+1

s ) = (x′s, d
′
s) only if

trs,|d′s|((x
′
s,x

i
−s), (d

′
s,d

i
−s)) ≤ trs,V i

s
(xi,di) (9)

3. Upon completion, every processing node n broadcasts
to each sensor s its processing time coefficient Pn, and
the times (tb

s′,

di
s′ (n)

, tr
s′,

di
s′ (n)

) and the corresponding

slice widths yi
s′,

di
s′ (n)

for all sensors that used node n,

i.e., s′ ∈ {s′|∃v s.t. dis′(v) = n}.

Fig. 2: Pseudo-code of Transmission Time Preserving (TTP)

4.1. Convergence analysis
If the image contents would not change, a distributed algorithm
would provide constant system performance if it reaches an al-
location at which the sensors would settle. Such an allocation,
if it exists, could be reached either through repeated infor-
mation exchange between the sensors, or the sensors could
compute the allocation if they have sufficient information avail-
able (i.e., they can compute the revisions of the other sensors).
The first approach involves communication overhead, while
the second approach requires information to be available and
it increases the computational load of the sensors.

In the following we show that TTP with asynchronous
revision would settle in a stable allocation. For the analysis
we assume that the interest points are evenly spaced along the
horizontal axis in every image, we can thus let αd = 0. Further-
more, we assume that each sensor can measure its transmission
and processing time coefficients. For notational convenience
we omit the index i whenever the expected transmission time
and processing time coefficients are used. We start by proving
the following lemma.

Lemma 1. Consider the allocation (x′s, d
′
s) that minimizes

the completion time of sensor s given the other sensors’ al-
location upon image i, given in (8). If there exists a sensor
q ∈ S \ {s} such that Tq((xs,xi

−s), (ds,d
i
−s)) > Tq(x

i,di)

and Tq(xi,di) > Ts(x
i,di), then

trs,|ds|(xs,x
i
−s), (ds,d

i
−s)) > trs,V i

s
(xi,di) (10)

Proof. We prove the lemma by contradiction. Assume that
trs,|ds|(xs,x

i
−s), (ds,d

i
−s)) ≤ trs,V i

s
(xi,di). It follows that

C̃q,v((xs,x
i
−s), (ds,d

i
−s)) ≤ C̃q,v(x

i,di) for all v ∈ Vq.
Call n̄ the processing node where sensor q experiences the
slowest completion time, i.e. n̄ = arg maxn∈dq T

n
q (xi,di).

By assumption Tq,n̄((xs,x
i
−s), (ds,d

i
−s)) > Tq,n̄(xi,di).

Hence, from the definition of completion time in (2), it follows
that that the processing coefficientPq,n̄((xs,x

i
−s), (ds,d

i
−s)) >

Pq,n̄(xi,di). Therefore the processing of sensors s and q under

allocation (xs,x
i
−s), (ds,d

i
−s) overlaps at node n̄, which im-

plies Tq,n̄((xs,x
i
−s), (ds,d

i
−s)) = Ts,n̄((xs,x

i
−s), (ds,d

i
−s)).

From the assumption Tq(xi,di) > Ts(x
i,di) it follows that

Ts(x
i,di) < Tq,n̄(xi,di) < Tq,n̄((xs,x

i
−s), (ds,d

i
−s)),

which implies Ts(xi,di) < Ts,n̄((xs,x
i
−s), (ds,d

i
−s)) and

contradicts (8). This proves the lemma.

We are now ready to prove the following.

Theorem 1. TTP with asynchronous revision terminates in a
allocation (x̄, d̄) after a finite number of revisions.

Proof. For an allocation (x,d) let us define the |S|-length
vector τ(x,d) = (Ts1 , Ts2 , . . . , Ts|S|) of completion times
sorted in decreasing order, i.e., Tsk(x,d) ≥ Tsk+1

(x,d).
Consider the revision of sensor s upon image i from as-
signment (xis, d

i
s) to (xi+1

s , di+1
s ) = (x′s, d

′
s). It follows

from (9) and from Lemma 1 that no sensor q ∈ S \ {s} such
that Tq(xi,di) > Ts(x

i,di) will experience an increase in
completion time, i.e. Tq((xs,xi

−s), (ds,d
i
−s)) ≤ Tq(x

i,di).
Thus, for the revision of sensor s upon image i it holds
τ(xi+1,di+1) <L τ(xi,di), where <L stands for lexico-
graphically smaller. Among all vectors τ of ordered comple-
tion times there is a vector that is lexicographically minimal,
the vector that corresponds to all sensors completing at the
same time. Thus, the algorithm terminates in an allocation
(x̄, d̄) compared to which no sensor can revise its assign-
ment.

Observe that the result in Theorem 1 cannot be extended
to the case of synchronous revision.

Example 1. Let S = {1, 2}, N = {1, 2}, Cs,n = 2, Pn = 5,
and o = 0.1. Let the initial assignment be d1

1 = (1), d1
2 = (1),

where both sensors allocate their load only to processing node
n = 1 (as a consequence, x1

s = (1, 0)). The completion time
is T 1(x1, d1) = (10.4, 10.4). Under synchronous revision,
i.e. Di = S, each sensor s computes the optimal allocation
d2
s = (2) and x2

s = (0, 1) that corresponds to the optimal
completion time computed as T 1

s ((x2
s, x

1
−s), (d

2
s, d

1
−s)) = 5.4.

Observe that assignment d2
s satisfies condition (9) for both

sensors, as trs,2((x2
s, x

1
−s), (d

2
s, d

1
−s)) = trs,1(x1,d1) = 4.

Hence, both sensors would update their assignments to d2
1 =

(2), d2
2 = (2). As both sensors allocate their load only to

processing node n = 2, their completion time would still
be T 2(x2, d2) = (10.4, 10.4). Therefore, under synchronous
revision, the sensors will cycle between assignments ((1), (1))
and ((2), (2)).

Furthermore, observe that condition (9) in TTP prevents
the revision by sensor s upon image i to cause an increase of
the completion time of any sensor q whose completion time
is longer than that of sensor s. While it is clear that condi-
tion (9) facilitates the convergence of TTP, it is unclear how it
affects the system performance. We address this question in
the following section.
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Fig. 3: Normalized completion time mean square error
(NMSE) for TTP and Greedy. The figure shows the averages
computed over all the frames and over a moving window of
30 frames for both converged and single revision updates.

5. NUMERICAL RESULTS

We evaluate the convergence properties and the completion
time of the proposed algorithm through simulations using two
video traces. The video traces have a resolution of 720 ×
480 pixels, and frame rates of 30 frames per second. Each
simulation is run on the first 300 frames of the video traces.
Both traces depict the same group of 9 people, slowly moving
around an empty parking lot, with the point of view rotated by
approximately 90◦. The observed scene changes very slowly
compared to the frame rate, and thus the variation in the interest
point distribution is low across the images in the traces.

For the simulations we consider a topology consisting of
S = 2 sensor nodes and N = 3 processing nodes. All the
nodes are placed on a two-dimensional plane. The processing
nodes are placed between the two sensor nodes such that each
processing node is closer to sensor node 1 than sensor node 2.
Using the Friis transmission equation to estimate the power
at the receiving nodes, the Shannon capacities of the channels
can be calculated and gives the transmission time coefficients

C = 10−2

(
1 2 3
2 3 4

)
s/image

while the processing time coefficients are such that a single
image can be processed in 8 · 10−2 seconds.

We evaluate the performance of the algorithms by com-
puting the mean square error eC of the system completion
time T i = maxs T

i
s compared to the optimal completion time

T i,∗ = maxs T
i,∗
s , defined as

eC =
1

|Is|
∑|Is|
i=1

(
T i − T i,∗

)2
,

where T i,∗s is the completion time of sensor node s under
the optimal allocation. In the figures we show the MSE of
the considered algorithms normalized by the MSE of a non-
adaptive algorithm where each sensor always uses the fixed
assignment function and cut-point location combination that
minimizes the MSE.

Throughout the section, we compare TTP to Greedy pro-
posed in [11]. Greedy differs from TTP in that each sen-
sor s ∈ Di always revises its assignment from (xis, d

i
s) to

(xi+1
s , di+1

s ) = (x′s, d
′
s). Observe that Lemma 1 does not hold
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Fig. 4: Completion time NMSE (above) and number of iter-
ations required to terminate (below) as a function of the as-
signment inter-refresh time R for TTP and Greedy. The results
show the average over 20 runs.

for Greedy, there is thus no guarantee that the system would
reach a stable allocation in a finite number of revisions when
using Greedy.

5.1. Impact of Convergence
Recall that TTP was defined to allow a single revision per im-
age i. However, the sensors could perform repeated allocation
revisions for the same image i. According to Theorem 1 this
would allow them to compute a stable allocation (x̄, d̄). In
the following we investigate whether implementing a stable
allocation upon every image improves the system performance,
and how it affects the computational complexity.

For the evaluation, we let the sensors perform at most 50
revisions upon each image i and we denote by (xi,k,di,k) the
allocation after the k-th revision. The allocation (xi,di) imple-
mented upon image i is either a stable allocation (x̄, d̄), if TTP
terminates before 50 revisions, or the allocation (xi,50,di,50)
reached after 50 revisions. We refer to the allocation as con-
verged. We compare the performance of converged updates
with the case when the sensors perform a single revision as de-
fined by TTP in Section 4. Observe that performing converged
updates increases the computational load of the sensors, as
each update requires each sensor s ∈ Di,k to compute the
allocation (x′s, d

′
s) that minimizes its completion time.

In Figure 3, we show the normalized MSE (NMSE) for
Greedy and TTP under asynchronous revision, for the single re-
vision and converged. First, we observe that letting the sensors
reach a stable allocation provides on average a lower comple-
tion time, both for Greedy and TTP. Second, we observe that
the difference between single revision and converged is signifi-
cantly higher for TTP than for Greedy. This is due to that TTP
only allows sensors to make a subset of the updates allowed
by Greedy. In Table 1 we show the average and the standard
deviation over all frames of the number of iterations needed by
the sensors to reach a stable allocation, for all the simulation
scenarios that we consider. We also show the ratio r of images
for which the algorithm converges within 50 updates, versus
the total number of images. Observe that r = 1.0 for asyn-
chronous revision, both for TTP and Greedy, which shows that



Table 1: Average and standard deviation over all frames of the
number of iterations needed by the sensors to reach a stable
allocation and convergence ratio r, for converged updates.

un-coord. assign. coord. assign. (R = 5)
Rev. Alg. avg. std.d. r avg. std.d. r

Async. TTP 2.71 0.87 1.0 2.63 0.73 1.0
Greedy 3.19 0.95 1.0 2.84 0.92 1.0

Sync. TTP 3.44 1.98 0.52 1.75 1.42 0.89
Greedy 3.82 2.58 0.50 2.17 1.42 0.90

Greedy always reaches a stable allocation in practice. Further-
more, the results confirm that TTP requires less iterations to
converge to a stable allocation, hence it may represent a good
trade-off between computational complexity and performance.

5.2. Coordinated assignment mode
In the following we investigate the benefit of coordinated as-
signment in terms of completion time and convergence time.

In Figure 4 we show the completion time NMSE and the
number of iterations required to terminate as a function of
the allocation inter-refresh time R, for TTP and Greedy. The
average completion time NMSE for the scenarios in Figure 3
is shown for comparison using gray lines. We observe that, if
sensors can converge to a stable cutpoint location vector, the
completion time NMSE significantly increases in the coordi-
nated assignment operation mode. For single revision updates
instead, it pays off to coordinate the assignment, as one sin-
gle revision is not sufficient for the system to reach a good
allocation in the un-coordinated assignment operation mode.
For both converged and single revision updates it is beneficial
to update the assignment often, as for high values of R the
provided assignment becomes obsolete and does not help to
improve the performance of the system. The number of itera-
tions needed to converge to a stable allocation decreases as the
inter-refresh time R increases, and it is lower for TTP, which
validates the analytical results in Section 4.

5.3. Impact of Revision Opportunity
We finally compare synchronous and asynchronous revisions.
While synchronous revisions may allow the nodes to converge
faster, convergence cannot be guaranteed and the resulting
performance is unclear.

In Figure 5 we show the complementary CDF of the
completion time NMSE for synchronous revision and for
asynchronous revision. The figure confirms that synchronous
revision may degrade the system performance in both un-
coordinated and coordinated assignment modes. The comple-
tion time is significantly higher under synchronous revision
for the un-coordinated assignment mode, as every sensor
s is free to update its assignment vector dis upon the same
image i, sensors may select their allocations in a way that the
load on certain processing nodes becomes very large. The
completion time MSE is similar under synchronous revision
and asynchronous revision for converged updates, although
Greedy does not terminate for a significant fraction of the
images, as shown in Table 1.

6. CONCLUSION AND FUTURE WORK
We considered the problem of completion time minimization in
VSNs that include dedicated processing nodes for distributed
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Fig. 5: Complementary CDF of the completion time NMSE
for synchronous revision and asynchronous revision for the un-
coordinated assignment (above) and the coordinated assign-
ment (below) operation modes. The curves show the results
for Greedy for single revision and converged updates.

visual analysis. We proposed a distributed algorithm for fea-
ture computation off-loading and showed that it converges
to a stable off-loading assignment. Simulations performed
on a surveillance video trace showed that the proposed algo-
rithm converges faster than existing algorithms at the price of
a slightly higher completion time. In case of strong computa-
tional constraints at the sensor nodes, the system can benefit
from coordinating the operation of the sensor nodes through a
central entity, provided that coordination is performed reason-
ably often.
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