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Abstract—Replication games are a model of the prob-
lem of content placement in computer and commu-
nication systems, when the participating nodes make
their decisions such as to maximize their individual
utilities. In this paper we consider replication games
played over arbitrary social graphs; the social graph
models limited interaction between the players due to,
e.g., the network topology. We show that in replication
games there is an equilibrium object placement for
arbitrary social graphs. Nevertheless, if all nodes follow
a myopic strategy to update their object placements
then they might cycle arbitrarily long before reaching
an equilibrium if the social graph is non-complete. We
give sufficient conditions under which such cycles do not
exist, and propose an efficient distributed algorithm to
reach an equilibrium over a non-complete social graph.

I. Introduction

Replicating content close to its users has long been
used in computer architectures and in the Internet to im-
prove system performance. In computer architectures CPU
caches have been used to decrease memory access latencies
[1]. In the Internet caches are employed to provide faster
access to content for local customers and at the same
time to decrease the amount of network traffic [2], [3],
[4]. Content replication is also at the core of clean-slate
information centric network architectures [5].

The problem of content replication is often modeled by a
distributed replication group [6], [7], [8], [9]. A replication
group consists of nodes and users located near the nodes.
The nodes can replicate objects, which are accessed by
local or remote users. The cost incurred by a user accessing
an object depends on whether the object is replicated
locally, in a remote node, or is not replicated in any
node. A commonly studied problem of replication is how
to minimize the total cost of users accessing the objects
through either optimal node placement [6] or through the
optimal allocation of objects to nodes [7].

However there is often no central authority that would
be able to enforce the optimal solution on the nodes, thus
they would not implement the optimal solution if they can
individually fare better by deviating from it [8], [9], [10].
Instead, nodes would replicate the objects that minimize
their own costs, and would update the set of replicated
objects as a response to the decisions made by other nodes.

In this paper we model the problem of selfish replication
as a non-cooperative graphical game. The social graph
models the limited interactions among nodes defining
neighborhood relationships between them, which influence
the cost of accessing replicas. We show that Nash equilibria
exist for arbitrary social graphs, but if the social graph
is non-complete, the nodes might cycle arbitrarily long
before reaching an equilibrium state. Based on our results
we give a sufficient condition under which a simple and
efficient distributed algorithm can be used to reach an
equilibrium and illustrate the efficiency of the algorithm
with numerical results.

II. System model
In the following we describe the system model, and

formulate the problem of replication as a non-cooperative
game.

A. The replication problem
We consider a set of nodes N and a set of objects O. The

demand for object o ∈ O at node i ∈ N is given by the rate
wo

i ∈ R+. We consider that every object o ∈ O has unit
size, So = 1, which is a reasonable simplification if objects
are divisible into unit-sized chunks. Node i has integer
storage capacity Ki ∈ N+, which it uses to replicate
objects locally. We describe the set of objects replicated at
node i with the |O| dimensional vector ri = (r1

i , . . . , r
|O|
i ),

whose component ro
i ∈ {0, 1} is 1 if object o is replicated in

node i. Due to the limited storage capacity
∑

o r
o
i S

o ≤ Ki.
Every node is located at a vertex of an undirected graph

Γ(N,E), called the social graph. We denote the set of
neighbors of player i by N (i), i.e., N (i) = {j|(i, j) ∈ E}.
The social graph allows us to consider a generalized version
of the cost model described in [1], whose variations were
used in [8], [9], [10]. In our model the marginal cost
of accessing object o in node i is αi if the object is
replicated in node i, it is βi if it is replicated in a node
j ∈ N (i) neighboring i, and it is γi otherwise. We consider
the practically relevant case when αi ≤ βi < γi, or
equivalently

0 ≤ δi ,
βi − αi

γi − αi
< 1. (1)

To ease notation we say that an object o ∈ O is i-available
if it is replicated by at least one of player i’s neighbors in



which case
πo

i ,
∏

j∈N (i)

(1− ro
j ) = 0,

otherwise we say that object o ∈ O is not i-available.
The cost of node i due to object o is proportional to

the demand wo
i , and is a function of ri and the replication

states ro
−i of the neighboring nodes

Co
i (ro

i , r
o
−i) = wo

i (αir
o
i + (1− ro

i ) [γiπ
o
i + βi(1− πo

i )])
(2)

B. The graphical replication game
We consider a system in which the goal of every node is

to minimize its own total cost. We model this problem of
selfish replication as a multiplayer non-cooperative game
played on a graph, called a graphical game. The players are
the nodes, the set of actions of player i is the set of feasible
replication configurations Ri = {ri|

∑
o r

o
i S

o ≤ Ki}, and
the cost function of player i is given by Ci(ri, r−i) =∑

o C
o
i (ro

i , r
o
−i). The social graph influences the cost func-

tion via the neighbor set N (i), i.e., the cost function
of player i is entirely specified by the actions of players
j ∈ N (i). The goal of player i is to choose a replication
strategy ri that minimizes its total cost given the strategy
profile r−i of the other players

arg min
ri

Ci(ri, r−i) = arg min
ri

∑
o

Co
i (ro

i , r
o
−i). (3)

Observe that the quantity Uo
i (ro

i , r
o
−i) = Co

i (0, ro
−i) −

Co
i (ro

i , r
o
−i) expresses the cost saving that player i achieves

through object o given the other players’ replication strate-
gies. We define the utility function of player i as the sum
of the cost savings Ui(ri, r−i) =

∑
o U

o
i (ro

i , r
o
−i). Note that

finding the minimum cost is equivalent to finding the max-
imum utility. Consequently, the problem of replication can
be modeled by the strategic game G =< N, (Ri), (Ui) >.
We can express the utility Uo

i (ro
i , r

o
−i) of player i by

substituting (2) into the definition of the cost saving

Uo
i (ro

i , r
o
−i) = ro

iw
o
i [βi(1− πo

i ) + γiπ
o
i − αi] . (4)

We note a property of the utility defined in (4): the utility
of player i due to object o is independent of the other
players’ strategies if she does not replicate the object, i.e.,
ro

i = 0 ⇒ Uo
i (0, ro

−i) = 0. If player i replicates object o
then the cost saving is

Uo
i (1, r−i) =

{
wo

i [γi − αi] = cio if πo
i = 1

wo
i [βi − αi] = δicio if πo

i = 0 (5)

III. Results

In this section we investigate the existence of Nash
Equilibria in graphical replication games and whether the
players will reach an equilibrium if they myopically update
their strategies. For the proofs of all the theorems and
propositions that follow, we refer to [11].

A. Existence of equilibria
The first question we address is whether every graphical

replication game possesses a pure strategy Nash equilib-
rium (NE). It is known that for a complete social graph
pure strategy NE exist in a replication game [9], but it
is not known whether pure strategy NE exist for non-
complete social graphs. In what follows we show that pure
strategy NE exist for arbitrary social graphs.

We first define a best reply of player i as a best strategy
r∗i of player i given the other players’ strategies

Ui(r∗i , r−i) ≥ Ui(ri, r−i) ∀ ri ∈ Ri. (6)

The NE is a strategy profile r∗ in which every player’s
strategy is a best reply to the other players’ strategies

Ui(r∗i , r∗−i) ≥ Ui(ri, r
∗
−i) ∀ ri ∈ Ri, ∀ i ∈ N. (7)

Finally, we define a best reply path as a sequence of strategy
profiles, such that in every step t there is one player that
strictly increases its utility by updating her strategy to
a best reply ri(t) with respect to the other players’ most
recent strategies r−i(t− 1). A best reply path terminates
when no player can increase its utility, in which case a NE
is reached. Hence, to show the existence of NE it is enough
to show that there is a particular strategy profile starting
from which there is at least one finite best reply path.

Consider the strategy profile r(0) that consists of the
best replies that the players would play on an edgeless
social graph. In this strategy profile every player i repli-
cates the Ki objects with highest demands wo

i . Let us
consider now a best reply path starting from the strategy
profile r(0). For t ≤ n each player i ∈ N has a chance
to play her first best reply at t = i. For t > n they play
in an arbitrary order. We showed in [11] that following
this dynamic the utilities of the players cannot decrease
for t > 0. Nevertheless, every time a player updates
her strategy her utility must strictly increase. Since the
players’ utilities cannot increase indefinitely, the best reply
path must end in a Nash equilibrium. Hence we can state
the following.

Theorem 1. Every graphical replication game possesses a
pure strategy Nash equilibrium.

B. Reaching an equilibrium state
The existence of equilibrium states is important, but

in a distributed system it is equally important that the
nodes would be able to reach an equilibrium state using
a distributed algorithm. The algorithm used to prove
Theorem 1 can be adequate if the demands for the objects
in the nodes wo

i never change, so once a NE is reached, the
nodes will not deviate from it. Nevertheless, the algorithm
would be inefficient if the demands can change over time,
as the equilibrium states for different demands are, in
general, different. Hence, an important question is whether
the players will reach a NE given an arbitrary initial



strategy profile, e.g., a NE for past demands, and given
the myopic decisions they make to update their strategies.

It is easy to show that if in every time step t every
player i simultaneously updates her strategy to her best
reply with respect to r−i(t − 1), the dynamic can cycle.
For example consider two nodes and |O| ≥ 2. Let ci1 >
ci2 > ci1δi and Ki = 1. If the initial replication strategies
are ri(0) = (1, 0) then in the next two steps ri(1) = (0, 1)
and ri(2) = (1, 0) for both players, and so on.
As an alternative, consider a sequence of best reply steps
as defined in Section III-A, the result of an asynchronous
best reply dynamic. A natural question is whether all best
reply paths are finite irrespective of the initial strategy
profile r(0) and the social graph. The answer is no in
general: in Table I we show the players’ updates that
form a cycle in a best reply path. The arrangement of
the players and their relevant preferences are shown in
Figure 1.

c1B > c1A

c2C > c2B c3D > c3C

c4A > c4D

P1

P2 P3

P4 P8

c8Aδ8 > c8o ∀o 6= A
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c5Bδ5 > c5o ∀o 6= B

P6

c6Cδ6 > c6o ∀o 6= C

P7

c7Dδ7 > c7o ∀o 6= D

Fig. 1: Social graph and players’ preferences that allow a
cycle in best replies.

Player P1 P2 P3 P4 P5 P6 P7 P8
r(0) A B D A B C D A
r(1) A B C A B C D A
r(2) B B C A B C D A
r(3) B B C D B C D A
r(4) B C C D B C D A
r(5) A C C D B C D A
r(6) A C D D B C D A
r(7) A B D D B C D A
r(8) A B D A B C D A

TABLE I: Cycle in best replies for the game played over
the social graph in Figure 1. An arrow shows the best reply
played at each step.
This negative example raises the question under what

conditions nodes would reach an equilibrium state in a
finite number of steps. In the following we distinguish
between complete and non-complete social graphs.

Theorem 2. Every best reply path in a replication game
played over a complete social graph is finite.

We know, however, that if the social graph is non-
complete then this is not necessarily the case.
The case of non-complete social graph: Given that cycles

might exist in the best reply paths for non-complete social
graphs, an important question is whether the players
might cycle forever without being able to reach an equi-
librium state. In the following we show that if we consider

replication games with Ki = 1, then from every strategy
profile there exists at least one finite best reply path that
leads to a NE. This property is known in the literature as
weak acyclicity in best replies.
Investigating the restrictions on the strategy profiles which
can be included in a cycle, we can prove the following

Proposition 3. From every strategy profile of a graphical
replication game with Ki = 1 ∀i ∈ N there exists a best
reply path that leads to a NE in a finite number of steps.

In the following we show that if we introduce a small
restriction on the marginal costs of accessing objects
then cycles cannot exist even if the social graph is non-
complete.

We define an improvement step of player i at step t as
an update of her strategy ri(t) to ri(t + 1), such that its
utility increases

Ui(ri(t+ 1), r−i(t)) > Ui(ri(t), r−i(t)). (8)

The best reply step defined in (6) is special case of an im-
provement step. A sequence of improvement steps is called
an improvement path. An improvement path terminates
when no player can perform an improvement step, i.e., in
an equilibrium.

In order to avoid cycles, we consider a subset of the set
of improvement paths. We define a lazy improvement step
of player i as an improvement step with minimal number
of changes among all improvement steps that lead to the
same utility. Formally, ri(t+1) is a lazy improvement step
if there is no r′i(t+ 1) 6= ri(t+ 1) for which

Ui(ri(t+ 1), r−i(t)) = Ui(r′i(t+ 1), r−i(t)) and
|Ii(t+ 1)| > |I ′i(t+ 1)|

where Ii(t + 1) is the inserted set defined as Ii(t + 1) =
{o|ro

i (t) = 0 ∧ ro
i (t + 1) = 1}. If players only make lazy

improvement steps then we can give a sufficient condition
under which all improvement paths are finite.

Proposition 4. In a graphical replication game with βi =
αi ∀i ∈ N every lazy improvement path is finite.

The case βi = αi was considered as a model of cooper-
ative caching between peering ISPs in [10].

C. Fast convergence based on graph coloring
In the previous section we showed that, under certain

conditions, the players always reach a Nash equilibrium
if they update their strategies asynchronously. Unfortu-
nately the implementation of the asynchronous update
rule in a distributed system would require global synchro-
nization, which can be impractical in large distributed
systems. Hence, an important question is whether the
players would always reach a Nash equilibrium even if
some players would update their strategies simultaneously.
With the following theorem we show that relaxing the
requirement of asynchronicity is indeed possible.



Theorem 5. Consider a graphical replication game with
βi = αi ∀i ∈ N . If player i makes an improvement step
at time t only if no neighboring player j ∈ N (i) makes an
improvement step at time t, then every lazy improvement
path is finite.

We refer to this dynamic as the plesiochronous better
reply dynamic (PBRD), as opposed to the asynchronous
dynamic (ABRD) considered in Proposition 4. In order
to maximize the convergence speed of PBRD we need
to find a minimum vertex coloring of Γ, i.e., we have
to find the chromatic number χ(Γ) of graph Γ. Finding
the chromatic number is NP-hard in general, but efficient
distributed graph coloring algorithms exist [12], which can
be used to find a coloring in a distributed system. Given a
coloring, the number of steps required to reach equilibrium
can be significantly smaller than for ABRD for sparse
graphs. We illustrate the convergence speedup of PBRD
compared to ABRD in Figure 2. The figure shows the
average number of steps needed to reach equilibrium as
a function of the edge probability in Erdős-Rényi random
graphs with 87 vertices. For the PBRD we used the Welsh-
Powell algorithm to find a coloring [13]. Each player had
storage capacity K = 5 and we considered two scenarios,
αi = βi and αi 6= βi. Each data point is the average of the
results obtained on 160 random graphs with the same edge
probability. The figure shows the 95% confidence intervals
for the case αi = βi. We omitted the confidence intervals
for αi 6= βi to improve readability.
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Fig. 2: Average number of improvement steps needed to
reach a NE for ABRD and PBRD vs. the edge probability
of the Erdős-Rényi random graphs used as social graph.

The results confirm that PBRD converges significantly
faster compared to ABRD, especially over sparse social
graphs. The existence of cycles when αi 6= βi does not
make a significant impact on the results. The figure also
confirms that the convergence properties are different
on a complete social graph than on a sparse graph, as
the number of steps necessary for ABRD to reach a
NE drops for p = 1. This observation is in accordance
with the difference in computational complexity of finding
the optimal object replication strategy [1]: the problem
is NP-complete on a non-complete social graph, but is

polynomial in the number of players if the social graph is
complete. A thorough analysis of the relationship between
the complexity of finding the optimal solution and the
convergence properties of improvement paths as a function
of the graph topology is subject of our future work.

IV. Conclusion
In this paper we considered the problem of replication of

contents by a set of selfish nodes, which replicate content
to minimize their own costs. We modeled the problem as a
graphical replication game, a replication game played over
a social graph. We showed that independently of the social
graph there always exists an equilibrium state from which
no node wants to deviate, but the social graph affects
the ease of reaching such an equilibrium state. Over a
complete social graph the nodes can follow a simple myopic
strategy and would always reach an equilibrium in a finite
number of steps, but over a non-complete social graph they
could cycle arbitrarily long before reaching an equilibrium.
Finally, we provided a condition under which cycles do not
exist, and based on this result we proposed an efficient
algorithm to reach an equilibrium state over sparse social
graphs.
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