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Abstract—Internet service providers increasingly deploy inter-
nal CDNs with the objective of reducing the traffic on their transit
links and to improve their customers’ quality of experience.
Once ISP managed CDNs (nCDNs) become commonplace, ISPs
would likely provide common interfaces to interconnect their
nCDNs for mutual benefit, as they do with peering today. In this
paper we consider the problem of using distributed algorithms
for computing a content allocation for nCDNs. We show that
if every ISP aims to minimize its cost and bilateral payments
are not allowed then it may be impossible to compute a content
allocation. For the case of bilateral payments we propose two
distributed algorithms, the aggregate value compensation (AC)
and the object value compensation (OC) algorithms, which differ
in terms of the level of parallelism they allow and in terms of
the amount of information exchanged between nCDNs. We prove
that the algorithms converge, and we propose a scheme to ensure
ex-post individual rationality. Simulations performed on a real
AS-level network topology and synthetic topologies show that
the algorithms have geometric rate of convergence, and scale
well with the graphs’ density and the nCDN capacity.

I. INTRODUCTION

Commercial content distribution networks (CDNs) have
for a decade dominated the market of digital media delivery.
For content providers they offer relatively low delivery costs
compared to investing in an own infrastructure, they provide
dynamically scaling bandwidth to satisfy sudden surges of
demand, and through multiple surrogate servers they provide
better quality of experience (QoE) for customers than a system
based on a single content delivery server [1], [2].

As the digital media delivery market matures, major over-the-
top content providers, such as Netflix, Hulu, etc, try to maintain
customer satisfaction through increasing QoE; 3D content has
become commonplace, and super HD content has become
available recently [3]. Increased QoE results in increased
bitrates, which stresses network operators’ networks, yet in
the traditional CDN-based content distribution model network
operators are not part of the revenue chain. At the same time,
good QoE may also require control of the network resources
between the CDN surrogate and the customers’ premises and
needs content to be placed closer to the customers.

Many network providers have started to deploy their own
CDNs for the above reasons, and recent industry efforts aim to
interconnect these network provider managed CDNs (nCDNs),
potentially also with traditional commercial CDNs [2], [4]. For
content providers, nCDN interconnection provides a transparent
solution for bringing content closer to the customers than any

single CDN would be able to provide. For network providers,
nCDN interconnection can improve CDN availability and
customer QoE.

As nCDNs often prefetch content based on predicted de-
mands during periods of low demands (e.g., NetFlix Open
Connect), successful nCDN interconnection requires that given
predicted demands, the nCDNs be able to agree on a content
allocation that serves all service providers’ interests. In lack
of a central authority the agreement has to be based on a dis-
tributed algorithm, the algorithm should not reveal confidential
information, and the resulting allocation should be such that no
nCDN fares worse due to interconnection, as otherwise nCDNs
would have no incentive to interconnect.

In this paper we address the design of distributed algorithms
for content allocation among interconnected CDNs. We propose
a model of CDN interconnection assuming that CDNs aim to
maximize the QoE of their customers, and we show that self-
enforcing content allocations may not exist if payments are not
allowed among nCDNs. We propose two distributed algorithms
that use bilateral compensations to guarantee convergence to a
content allocation and we propose an opt-out scheme, which
combined with the two algorithms ensures that the resulting
allocations are individually rational. Thus, participation accord-
ing to the proposed algorithms is ex-post individually rational
for all nCDNs. We use simulations on a measured Internet
AS-level topology to evaluate the proposed algorithms, and
we show that faster convergence can be achieved if nCDNs
reveal more private information, such as content demands. To
the best of our knowledge ours is the first work to consider the
design of ex-post individually rational distributed algorithms
for CDN interconnection.

The rest of the paper is organized as follows. Section II
describes the system model. In Section III we show that a
satisfactory content allocation may not exist without payments.
In Section IV we design two distributed algorithms and we
prove their convergence. Section V evaluates the proposed
algorithms in terms of convergence rate and achieved cost
savings. In Section VI we review the related work. Section VII
concludes the paper.

II. SYSTEM MODEL

We consider a set of autonomous service providers N . Each
service provider manages a CDN; we refer to the CDN managed
by service provider i ∈ N as network CDN (nCDN) i. The
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customers of service provider i generate requests for content
items from the set O of all content items. We make the common
assumption that content is divisible in same-sized chunks, thus
every item o ∈ O has the same size [5], [6]. The customers of
service provider i generate requests for content item o at an
average rate of woi ∈ R+. We denote the set of content items
stored by nCDN i by the set Ai ∈ Ai = {A ⊂ O : |A| = Ki},
where Ki ∈ N+ is the maximum number of items that nCDN i
can store. In what follows, we use the terms nCDN and service
provider interchangeably.

We model the relationships between the nCDNs by an
undirected graph G(N,E), called the interconnection graph.
There is an edge between nCDN i and nCDN j iff they are
connected, and we use N (i) = {j|(i, j) ∈ E}. We denote by
A−i the content item allocations of every nCDN other than
nCDN i and by Ri(A−i) the set of items that can be retrieved
from the nCDNs connected to nCDN i

Ri(A−i) ,
⋃

j∈N (i)

Aj . (1)

We consider that each service provider aims to improve
the quality of experience of its customers through decreasing
the average access latency to content items. We denote by αi
the unit cost (i.e., access latency) of service provider i for
serving an item stored in nCDN i, i.e., locally. If an item is
not stored locally at nCDN i, it can be retrieved from one
of the nCDNs N (i) ⊂ N connected to nCDN i. We denote
by βji the unit cost for serving an item from a connected nCDN
j ∈ N (i). Observe that βji depends on the neighbor j. If item
o is available neither locally nor at a connected nCDN, it needs
to be retrieved from the origin content provider in the network.
We denote by γi the unit cost of retrieving an item from the
origin content provider. We make the reasonable assumption
that it is faster to access an item stored in the local nCDN
than to retrieve it from a connected nCDN, and it is faster to
retrieve an item stored in a connected nCDN than retrieving it
from the content provider, i.e., αi < βji < γi. This assumption
is not restrictive, as if βji ≥ γi, we can remove (i, j) from E.
A. Average Access Latency Cost

We express the cost in terms of average access latency
incurred by service provider i in allocation A as Ci(A) =∑
o∈O C

o
i (Ai, A−i), where Coi (Ai, A−i) is the cost for access-

ing item o ∈ O,

Coi (Ai, A−i) = woi


αi if o ∈ Ai
min
j∈N (i)

{βji |o ∈ Aj} if o ∈ Ri(A−i)\Ai
γi otherwise.

(2)
Observe that (i) the content allocations of the nCDNs in N (i)
influence the cost of nCDN i through the set A−i, and (ii)
if item o is stored at several connected nCDNs then nCDN i
retrieves it from the one with lowest unit cost. The cost incurred
by service provider i for serving item o can be rewritten as

Coi (Ai, A−i) = Coi (∅, A−i)− (Coi (∅, A−i)− Coi (Ai, A−i))

= Coi (∅, A−i)− CSoi (Ai, A−i),

where CSoi (Ai, A−i) is the cost saving that service provider i

achieves by allocating item o given the content allocation at
the nCDNs connected to nCDN i. Since the cost Coi (∅, A−i)
is independent of the allocation Ai of nCDN i, finding the
minimum cost is equivalent to finding the maximum aggregated
cost saving

arg min
Ai

Ci(Ai, A−i) = arg min
Ai

∑
o

Coi (Ai, A−i)

= arg max
Ai

∑
o

CSoi (Ai, A−i).

If nCDN i allocates item o, i.e., o ∈ Ai, then the cost saving
can be rewritten as

CSoi ({o}, A−i)=

{
woi [γi − αi] if o /∈ Ri(A−i)
woi [βoi (A−i)− αi] if o ∈ Ri(A−i) (3)

where βoi (A−i) is the lowest unit cost at which nCDN i can
retrieve item o from a connected nCDN

βoi (A−i) , min
j∈N (i)

{βji |o ∈ Aj}. (4)

If instead o /∈ Ai, the cost saving CSoi ({o}, A−i) = 0. It follows
that finding the minimum cost for service provider i ∈ N
corresponds to solving a knapsack problem where the values
of the items are their cost savings given the allocations A−i
of the other nCDNs, and where the total weight is Ki.

B. Problem Statement

We consider that nCDNs would compute a content allocation
based on predicted demands periodically, e.g., during epochs
of low demand such as early mornings, and would perform
prefetching to implement the allocation. We assume that
bilateral payments are feasible, if necessary, and a payment
pi,j would appear as an additive term in the cost function of
nCDNs i and j. Payments can be settled periodically similar
to peering agreements.

Without cooperation, i.e., if the set of connected nCDNs
N (i) = ∅ for every service provider i, service provider i
would optimize the content allocation in nCDN i in isolation,
and would prefetch the Ki items with highest demands. We
denote the resulting allocation, which is optimal in isolation,
by AIi . The corresponding cost is CIi (AIi ) =

∑
o∈AI

i
woiαi +∑

o∈O\AI
i
woi γi.

Cooperation could allow service providers to decrease their
average access latency cost compared to isolation. For an
allocation A we define the cost saving gain as

ri(A) =
CIi (∅)− Ci(A)

CIi (∅)− CIi (AIi )
(5)

where CIi (∅) =
∑
o∈O w

o
i γi is the cost incurred by service

provider i with no nCDN. We call an allocation A individually
rational if ri(A) ≥ 1. Observe that service provider i benefits
from cooperating only if ri(A) > 1.

Since there is no central authority, cooperation requires a
distributed algorithm that (i) requires information exchange
between connected service providers only, (ii) reveals little
private information such as content demands, and (iii) in a
finite number of steps leads to a content allocation A that is
ex-post individually rational for all service providers i.
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III. FAILURE OF LOCAL GREEDY OPTIMIZATION

Without payments, a content allocation among interconnected
nCDNs would have to let every nCDN i allocate content items
that minimize its cost Ci, given the allocations of its connected
nCDNs N (i). Such an allocation is self-enforcing, as no nCDN
could gain by deviating from it. Modeling the interaction of
nCDNs as a strategic game Γ =< N, (Ai)i∈N , (Ui)i∈N >,
where the utility of player i is the sum of its cost savings
Ui(Ai, A−i) =

∑
o CSoi (Ai, A−i), such a content allocation

corresponds to a pure strategy Nash equilibrium A∗ of Γ, i.e.,
a set of allocations (A∗i )i∈N such that

A∗i ∈ arg max
Ai

Ui(Ai, A
∗
−i). (6)

It is easy to see that A∗ is individually rational.
Given an initial allocation of content items, (Ai)i∈N , a

distributed algorithm that might be used to compute A∗

and one that reveals little private information is the Local-
Greedy algorithm shown in Fig. 1. According to the Local-

At time step t:
• nCDN it ∈ N chooses a content allocation Ait(t) such

that CSit(Ait(t), A−it(t− 1)) > CSit(A(t− 1)).
• nCDN it communicates to ∀j ∈ N (it) the set of items it

plans to evict Eit(t) and insert Iit(t).

Fig. 1: Pseudocode of the Local-Greedy algorithm.

Greedy algorithm, at time step t a single nCDN it can update
its allocation from Ait(t − 1) to an allocation Ait(t) that
increases its cost saving given the allocations of the other
nCDNs A−it(t − 1). The Local-Greedy algorithm requires
little signaling: upon time step t nCDN it has to send the
set Eit(t) , Ait(t − 1) \ Ait(t) of evicted and the set
Iit(t) , Ait(t)\Ait(t−1) of inserted items to its neighboring
nCDNs. The Local-Greedy algorithm terminates when no
nCDN i can increase its cost saving by updating its allocation.
By definition (6), if the Local-Greedy algorithm terminates,
then the content allocation reached by the nCDNs is a pure
strategy Nash equilibrium A∗ of Γ. Nonetheless, it is not clear
whether (i) an equilibrium allocation always exists and whether
(ii) the Local-Greedy algorithm would lead to an equilibrium
even if it exists.

In what follows we show that there are instances of the
content allocation problem for which an equilibrium allocation
A∗ that satisfies (6) does not exist.

Non-Existence of Equilibrium Content Allocations

The strategic game Γ can be interpreted as a resource
allocation game where the resources are the items, coi ,
woi [γi − αi] ∈ R+ is the value of resource o for player i
and 0 < δji , βj

i−αi

γi−αi
< 1 is the penalty due to sharing the

resource with player j. The expression of the cost saving in
(3) becomes

CSoi ({o}, A−i) =

{
coi if o /∈ Ri(A−i)
coi min
j∈N (i)

{δji |o ∈ Aj} if o ∈ Ri(A−i).
(7)

(a)

δ21

δ41ca1

1cb1

(b)

δ32

δ12cb2

1cc2

(c)

δ43

δ23cc3

1cd3

Fig. 2: Cost saving graphs of nCDNs 1 to 3 in Example 1.
The squares show the cost savings of each nCDN given the
content allocation of its neighbors in the content allocation
(a, b, c, d, d).

Observe that the cost incurred by player i for retrieving item o
depends on which neighboring players store item o, not only
on whether any neighboring player stores it as in [7], [8], [9].
As a consequence, results on the existence of Nash Equilibria
in player-specific graphical congestion games do not apply.
Consider the following example.

Example 1. Consider nCDNs N = {1, . . . , 5} and the setO =
{a, b, c, d} of content items. The nCDNs are interconnected
according to the graph in Figure 3a. For nCDN 5

cd5δ
5
4 > co5 ∀o ∈ O \ {d}. (8)

For nCDN 1 the demands and the costs satisfy

δ21 < δ41 , c
a
1 < cb1, (9)

cb1δ
2
1 < ca1 < cb1δ

4
1 . (10)

Inequalities (9-10) specify a lattice (a poset with least and
greatest element) over the cost savings CSo1({o}, A−1), which is
shown in Figure 2a; we call it the cost saving graph. An arrow
between two cost savings points towards the greater of the two.

The lattice is on the one hand the product of two totally
ordered sets (solid arrows): values {coi |o ∈ O} and link costs
{δji |j ∈ N (i)}∪ {1}. The greatest element of the lattice is the
cost saving coi of the item o ∈ O with highest rate woi at nCDN i
when it is not allocated by any connected nCDN j ∈ N (i), i.e.
o /∈ Ri(A−i)⇒ CSoi ({o}, A−i) = coi . The least element of the
lattice is the cost saving cpi δ

j
i of the item p ∈ O with lowest

rate wpi when it is allocated by the connected nCDN j ∈ N (i)
such that j = arg mink∈N (i) δ

k
i . On the other hand, the lattice

is specified through additional inequalities, such as (10) for
nCDN 1 (dashed lines).

The cost saving graphs for nCDNs i ∈ {2, 3, 4} are
shown in Figure 2b, 2c and 3b, respectively. The squares in
Figures 2 and 3b represent the cost savings CSoi ({o}, A−i) of
the corresponding nCDN i ∈ {1, 2, 3, 4} at content allocation
A = (a, b, c, d, d). We omit the relations between cost savings
that are not relevant for the example.

We are now ready to prove the following.

Theorem 1. An equilibrium content allocation that simultane-
ously minimizes the cost of every nCDN (pure Nash equilibrium)
may not exist.

Proof. We prove the theorem by showing that the game
described in Example 1 does not possess a Nash equilibrium.
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1

2 3

4

5

(a)

δ54

δ34

δ14cb4

1cd4

(b)
Fig. 3: Interconnection graph (a) and cost saving graph (b) of
nCDN 4 in Example 1. The squares show the cost savings of
nCDN 4 in the content allocation (a, b, c, d, d).

From (8) it follows that no content allocation A such that
A5 6= {d} is a Nash equilibrium. We can furthermore restrict
the action set of each nCDN to the items that are included in
its cost saving graph, according to the following

A1 =
{
{a}, {b}

}
A2 =

{
{b}, {c}

}
A3 =

{
{c}, {d}

}
A4 =

{
{d}, {b}

}
This results in a total of 16 possible content allocations. From
the cost saving graphs in Figures 2 and 3b it follows that
any content allocation where two interconnected nCDNs store
the same item is not a Nash equilibrium; there are 12 such
allocations. Therefore, it is enough to focus on the 4 content
allocations in which there is no pair of interconnected nCDNs
that store the same item.
The following sequence of content allocations starts with these
four content allocations (marked with bold) and shows a cycling
sequence of updates of nCDNs that follow the Local-Greedy
algorithm. We omit nCDN 5, which always stores item (d).

(a, b, c,d) −→
4

(a, b, c, b) −→
3

(a, b,d, b) −→
2

(a, c,d, b)

−→
1

(b, c, d, b) −→
4

(b, c, d, d) −→
3

(b, c, c, d)

−→
2

(b, b, c, d) −→
1

(a, b, c, d) (11)

There is thus no NE, which proves the theorem.

Observe that so far we have not assumed any relationship
between the link costs δji and δij of interconnected nCDNs.
There are recent measurement studies [10] that show that it
may be reasonable to assume that link costs are symmetric
between interconnected nCDNs, i.e., δji = δij ∀j ∈ N (i). In
the case of Example 1, the requirement of symmetric link costs
implies a feasible total order on the link costs, 1 > δ41 > δ21 >
δ32 > δ43 > δ54 , which leads to the following.

Corollary 1. An equilibrium content allocation that simulta-
neously minimizes the cost of every nCDN may not exist even
if link costs are symmetric.

A corresponding non-existence result for the case of a linear
cost function and a directed interconnection graph was provided
in [11]. Observe that, in our model, a link (i, j) is effectively
directed if δji is sufficiently smaller than δij , such that the
content allocated at nCDN i does not affect the allocation
that minimizes the cost function of nCDN j. The importance
of Corollary 1 is that it extends the non-existence results to
undirected interconnection graphs.

Since an equilibrium allocation may not exist, Theorem 1
and Corollary 1 imply that if payments are not allowed
then cost minimizing nCDNs may not be able to compute a
content allocation, and algorithms like Local-Greedy may never
terminate. Since it is infeasible to determine a-priori whether
an equilibrium allocation exists (for reasons of computational
complexity and because doing so would require global knowl-
edge), computing a content allocation must involve payments
to guarantee finite execution time.

IV. BILATERAL COMPENSATION-BASED ALLOCATION

A natural solution involving payments would be to model
the problem as a coalition game with transferable utility, define
the value function of a coalition as the maximum cost saving
achievable by the set of players that form the coalition, and
use the Shapley value for computing compensations. Since
this value function is super-additive, the Shapley value is
individually rational [12]. Nonetheless, such a solution is
infeasible for several reasons. Computing the value of a
coalition requires a single entity to know all item popularities.
Second, it follows from the cost function (2) that computing the
value of a coalition is NP-hard, and the computation needs to be
done for all coalitions that induce a connected subgraph in G.

In the following, we propose two distributed algorithms that
involve bilateral compensations for computing an individually
rational content allocation. The two algorithms differ in
the amount of revealed private information, in the level of
parallelism that they allow and, as we will see, in terms of
convergence rate.

A. Aggregate-value Compensation Algorithm

Following the aggregate value compensation (AC) algorithm,
at every time step t there is a set Nt of nCDNs that is allowed
to update its content allocation. Given an allocation of content
items A(t − 1), an update made by nCDN it ∈ Nt from
Ait(t− 1) to Ait(t) can result in an increase of the cost (2)
for one or more connected CDNs j ∈ N (it). According to the
AC algorithm, an nCDN j ∈ N (it), it ∈ Nt, that would suffer
an increase of cost Cj(ANt(t), A−Nt(t− 1)) > Cj(A(t− 1)),
offers a compensation to an nCDN it ∈ N (j)∩Nt equal to its
cost increase ∆Cj(t) , Cj(Ait(t), A−it(t−1))−Cj(A(t−1)).
We use Dt ⊆ N (it) to denote the set of nCDNs that offer a
compensation,

j ∈ Dt ⇔ ∆Cj(t) > 0. (12)

The compensations are used to deter nCDNs from performing
updates: nCDN it ∈ Nt performs the update despite the offered
compensation if the aggregate compensation offered by all
connected nCDNs is lower than the gain it achieves from
updating the content allocation from Ait(t− 1) to Ait(t). We
call this the Aggregate-value Compensation (AC) algorithm,
and we summarize it in Figure 4. Observe that the AC algorithm
does not specify how Nt is chosen at each time step t, nor
how an nCDN j ∈ Dt chooses the recipient nCDN it of its
compensation.

Before proving convergence for specific choices of Nt, we
make the following definition.
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At time step t:
• Every nCDN it ∈ Nt computes a content allocation APit(t)

s.t. CSit(A
P
it

(t), A−it(t− 1)) > CSit(A(t− 1)).
• Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) the

set of items it plans to evict Eit(t) and insert Iit(t).
• Every nCDN j ∈ N (Nt) s.t. ∆Cj(t) > 0 offers a com-

pensation pitj (t) = ∆Cj(t) to one nCDN it ∈ N (j)∩Nt
• If

∑
j∈Dt

pitj (t) ≥ −∆Cit(t), then nCDN it accepts
the compensation and it does not make the update, i.e.,
Ait(t) = Ait(t− 1).
Otherwise nCDN it refuses the compensation and updates
its allocation from Ait(t− 1) to Ait(t) = APit(t).

• Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) its
decision, i.e. whether Ait(t)=Ait(t−1) or Ait(t)=APit(t).

Fig. 4: Aggregate-value Compensation (AC) Algorithm

Definition 1. A sequence Nt ⊆ N , t = 1, . . . of sets of nCDNs
is a complete sequence, if for all t and each nCDN i ∈ N
there exists a time step t′ > t such that i ∈ Nt′ .

Asynchronous operation: Let us first consider that only one
nCDN it ∈ Nt is allowed to update its allocation at each time
slot t. Thus, the sets Nt1 , Nt2 .. are singletons and nCDN it is
the only recipient of the compensation of each nCDN j ∈ Dt.
The following result shows that the AC algorithm converges
if used asynchronously.

Theorem 2. Let Nt be a complete sequence of singleton sets
and every nCDN use the AC algorithm. We refer to this as
the 1-AC algorithm. The 1-AC algorithm converges to an
allocation A of content items to interconnected nCDNs in a
finite number of time steps.

Proof. We prove the theorem by showing that the aggregate
cost C(A) ,

∑
i∈N Ci(Ai, A−i) strictly decreases at every

update made by any nCDN following the 1-AC algorithm.
Consider a nCDN it that updates its content allocation from

Ait(t − 1) to Ait(t) at time step t. It follows from (2) that
Ck(A(t)) = Ck(A(t− 1)) for any nCDN k /∈ N (it). We can
calculate the aggregate cost function C(A(t)) after the update
of nCDN it as

C(A(t)) = C(A(t−1))+∆Cit(t)+
∑
j∈Dt

∆Cj(t)+
∑

j∈N (it)\Dt

∆Cj(t).

From (12) it follows that
∑
j∈N (it)\Dt

∆Cj(t) ≤ 0. More-
over, since nCDN it refused the compensation offered by
the connected nCDNs in Dt, it follows that ∆Cit(t) +∑
j∈Dt

∆Cj(t) < 0. Hence, at every update of the 1-AC
algorithm C(A(t)) < C(A(t− 1)). Since the set of all content
allocations is finite and the sequence Nt is complete, this proves
the theorem.

A significant shortcoming of the 1-AC algorithm is that it
requires global synchronization. Furthermore, if nCDN it is
chosen uniformly at random at every time step t, the probability
that nCDN it can decrease its cost Cit by updating its content
allocation Ait(t − 1) at time step t decreases as the 1-AC
approaches allocation A. As a consequence, the convergence

of the 1-AC algorithm may be slow.
Plesiochronous operation: In the following we show that

convergence can be guaranteed even if the sets Nt are not
singletons. Before we formulate our result, we recall the
following definition from graph theory.

Definition 2. A k-independent set Ik of a graph G = (N,E)
is a subset Ik ⊆ N of the vertexes of G such that the distance
between any two vertexes of Ik in G is at least k+1. We denote
by Ik the set of all the k-independent sets of the interconnection
graph G.

We can now prove the following.

Theorem 3. Let Nt be a complete sequence of 2-independent
sets and every nCDN use the AC algorithm. We refer to this
as the I2-AC algorithm. The I2-AC algorithm converges to
an allocation A of content items to interconnected nCDNs in
a finite number of time steps.

Proof. Consider a nCDN j ∈ N (it), connected to it ∈ I2t .
From the definition of 2-independent set follows that it is
the only nCDN in N (j) that is allowed to update its content
allocation Ait at time step t. Hence, it is possible to compute
the aggregate cost function C(A(t)) from C(A(t − 1)) as
follows

C(A(t)) = C(A(t− 1)) +

+
∑
it∈Ut

(
∆Cit(t) +

∑
j∈Dt

∆Cj(t) +
∑

j∈N (it)\Dt

∆Cj(t)
)
,

where Ut ⊆ I2t is the set of nCDNs it such that Ait(t) 6=
Ait(t−1). From the same argument in the proof of Theorem 2
it follows that C(A(t)) < C(A(t− 1)) at every update of the
I2-AC algorithm.

Since the 2-independent sets of G are typically small, the
number of nodes that can make updates simultaneously is small,
and thus the convergence rate of the I2-AC algorithm may
be only marginally faster than that of 1-AC. The number
of simultaneous updates could be increased by using 1-
independent sets, i.e., I1-AC, but the convergence of the I1-
AC algorithm can not be guaranteed. We therefore propose an
alternative to the AC algorithm in the following.

B. Object-value Compensation Algorithm

The object value compensation (OC) algorithm, shown in
Figure 5, is similar to the AC algorithm, the difference is that
nCDNs offer a compensation for each individual object that is
to be evicted, instead of offering a compensation for the set of
objects to be evicted. As we will see this difference allows for
significantly faster convergence, but at the price of revealing
more information about content item popularities.

For the OC algorithm we can prove the following.

Theorem 4. Let Nt be a complete sequence of 1-independent
sets and every nCDN use the OC algorithm. We refer to this
as the I1-OC algorithm. The I1-OC algorithm converges to
an allocation A of content items to interconnected nCDNs in
a finite number of time steps.
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At time step t:
• Every nCDN it ∈ Nt computes a content allocation APit(t)

such that CSit(A
P
it

(t), A−it(t− 1)) > CSit(A(t− 1)).
• Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) the

set of items it plans to evict Eit(t) and insert Iit(t).
• Every nCDN j ∈ ∪it∈NtN (it) calculates

∆C̃oj (t) = Coj (APNt
(t), A−Nt

(t− 1))− Coj (A(t− 1))

for all o ∈ ∪NtEit . If ∆C̃oj (t) > 0, nCDN j offers to a
nCDN k ∈ Nt such that o ∈ Ek and βkj = βoj (A−k(t)) a
compensation poj,k(t) , ∆C̃oj (t).

• If
∑
j∈Dit

∑
o∈Eit

poj,it(t) ≥ −∆Cit(t), then nCDN it
accepts the offer and it does not make the update, i.e.,
Ait(t) = Ait(t− 1).
Otherwise nCDN it refuses the offer and updates its
allocation from Ait(t− 1) to Ait(t) = APit(t).

• Every nCDN it ∈ Nt communicates to ∀j ∈ N (it) its
decision, i.e. whether Ait(t)=Ait(t−1) or Ait(t)=APit(t).

Fig. 5: Object-value Compensation (OC) Algorithm

Proof. Consider the compensation poj,k(t) offered by nCDN j
to nCDN k for the eviction of item o ∈ Ek at time step t.
Substituting (3) in the expression of ∆C̃oj (t) we obtain

poj,k(t) = woj

[
βoj

(
(API1t

(t), A−I1t (t− 1))
)
− βoj (A(t− 1))

]
.

We call Ut the set of nCDNs that update their content allocation
at time step t of the algorithm, i.e. Ut = {it ∈ I1t |Ait(t) 6=
Ait(t − 1)}. Since Ut ⊆ I1t , it follows from (4) that
βoj

(
(API1t

(t), A−I1t (t− 1))
)
≥ βoj

(
(APUt

(t), A−Ut
(t− 1))

)
and thus

poj,k(t) ≥ Coj (A(t))− Coj (A(t− 1)). (13)

In the following we use (13) to prove that C(A(t)) < C(A(t−
1)) at every update of the I1-OC algorithm. We can express
the aggregate cost change ∆C(t) = C(A(t)) − C(A(t − 1))
as

∆C(t) =
∑
it∈Ut

∆Cit(t) +
∑
j∈Dt

∆Cj(t) +
∑

j∈N (it)\Dt

∆Cj(t). (14)

From (13) it follows that the second term∑
j∈Dt

∆Cj(t) =
∑
j∈Dt

∑
o∈O

∆Coj (t) ≤
∑
j∈Dt

∑
o∈O

poj,k(t). (15)

Substituting (15) into (14) we obtain

∆C(t) ≤
∑
it∈Ut

∆Cit(t) +
∑
j∈Dt

∑
o∈O

poj,k(t)

=
∑
it∈Ut

(
∆Cit(t) +

∑
j∈Dit

∑
o∈O

poj,it(t)
)
.

Since every nCDN it ∈ Ut refused the offer and updated its
allocation, it holds that ∆Cit(t) +

∑
j∈Dit

∑
o∈O p

o
j,it

(t) < 0
for all it ∈ Ut. Since the set of all content allocations is finite
and the sequence Nt is complete, this proves the theorem.

C. Achieving Individual Rationality

The proposed algorithms terminate in a finite number of
time steps, but the resulting content allocation A may not

1) Set `← 1 and N `
c ← N

2) At round `:
• The nCDNs in N `

c run algorithm AC or OC until it
terminates, in allocation A.

• Set A` ← A and N `+1
c ← {i ∈ N `

c |ri(A`) ≥ 1}.
3) If |N `

c \N `+1
c | > 0:

• Set `← `+ 1 and go to step 2).

Fig. 6: OPT OUT scheme

be individually rational, i.e., for some nCDNs i it may hold
ri(A) < 1. The nCDNs i ∈ {i ∈ N |ri(A) < 1} would
not have an incentive to implement Ai, and would instead
implementAIi . The OPT OUT scheme, shown in Figure 6, allows
these nCDNs to implement AIi instead of Ai and iteratively re-
executes the distributed algorithm with the remaining nCDNs;
hence the final allocation is individually rational.

Corollary 2. The OPT OUT scheme reaches an individually
rational content allocation Ā in a finite number of iterations.

Proof. Observe that the OPT OUT scheme terminates in alloca-
tion Ā = (A`N`

c
, AIN\N`

c
) only if N `

c = N `+1
c at step 3). This

is true if either |N `
c | = 0 or ri(A`) < 1 ∀i ∈ N `

c . In both
cases Ā is individually rational.

Thus the I2-AC and the I1-OC algorithms combined
with the OPT-OUT scheme are ex-post individually rational
distributed algorithms for computing content allocations in a
finite number of time steps, without prior global knowledge of
the item popularities.

V. EVALUATION

We use simulations to validate the results in Section IV and
to evaluate the convergence rate and the achieved gains for the
cooperating nCDNs.

We consider three network topologies for the evaluation.
The first topology is based on the Internet’s AS-level topology
reported in the CAIDA dataset [13] as of 1 Nov. 2013. In
order to have a fairly large interconnection graph, we consider
the ASes in the CAIDA dataset that are in Europe. As very
small ASs are unlikely to deploy their own CDNs, we only
consider ASs that have more than 216 IP addresses allocated.
We consider two ASes connected if they have a business
relationship (peering or transit) reported in the CAIDA dataset.
We call CAIDA graph the largest connected component of
the resulting topology, which consists of 638 ASes with an
average node degree of 10.77. The other two topologies are
Erdős-Rényi (CAIDA-ER) and Barabási-Albert (CAIDA-BA)
random graphs that have same number of vertexes, average
node degree and node degree ranking as the CAIDA graph. The
node degree distributions of the three topologies do, however,
differ in terms of their skeweness. We computed distance-1
and distance-2 colorings of all graph topologies by using the
Welsh-Powell [14] and the Lloyd-Ramanathan [15] algorithms,
respectively. We used αi = 0.5, γi = 20 at every nCDN and
we computed the βji as the propagation delay between nCDNs i
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Fig. 7: Probability density estimate of ri(Ā) for the three
algorithms 1-AC, I2-AC and I1-OC on the CAIDA, CAIDA-
BA and CAIDA-ER graphs. Results from 400 simulations.
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Ā

Edge ratio (d)

1

1.1

1.2

1.3

A
v
g
.
co
st

sa
v
in
g
ra
ti
o
(r

i(
Ā
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Fig. 8: Average number of nCDNs choosing to cooperate and
average cost saving ratio ri(Ā) at allocation Ā, as a function of
the edge ratio d for the three algorithms on the CAIDA graph.

and j assuming a signal propagation speed of 2 · 105 km/s. We
considered |O| = 3000 objects and the demands woi for the
content items at the various nCDNs follow Zipf’s law with
exponent 1. To simulate the algorithms, at each time step we
choose an nCDN or a k-independent set uniformly at random,
thus the sequence is complete. If not otherwise specified, the
results shown are the averages of 200 simulations and Ki = 20
for every nCDN i ∈ N . We omit the confidence intervals as the
results are within 5% of the average at a 0.95 confidence level.

A. Individual Rationality

We start with considering the gain of cooperation and
the necessity of the OPT OUT scheme. Figure 7 shows the
probability density estimate of the cost saving ratios ri(A`=1)
at the end of the first round of the OPT OUT scheme (` = 1)
for all nCDNs for the three interconnection graphs and the
three algorithms. The results show that the share of nCDNs for
which the allocation is individually rational after the first round
is determined by the graph topology. For the CAIDA-ER and
the CAIDA-BA graphs, the content allocation is individually
rational, ri(A`=1) ≥ 1, for all nCDNs, and thus the OPT
OUT scheme terminates after the first round, i.e. Ā = A`=1.
On the contrary, for the CAIDA graph for many nCDNs
ri(A

`=1) < 1 after the first round. The difference is due
to that the degree distribution of the CAIDA-BA graph is the
most right-skewed among all the interconnection graphs, while
the degree distribution of the CAIDA-ER graph is not skewed.

Observe that the probability densities for the 1-AC and I2-
AC algorithms overlap, and are similar to that for the I1-OC
algorithm. This suggests that the choice of the algorithm seems
to have little impact on the gain from cooperation achieved by
the nCDNs.

We evaluate the sensitivity of the results on synthetic
topologies based on the CAIDA graph. The synthetic topologies
were created by removing all edges from the CAIDA graph,
and then reintroducing d fraction of the edges at random; the
probability of reintroducing an edge between ASes i and j
was proportional to the product of the number of IP addresses
allocated to AS i and j.

Figure 8 shows the number of nCDNs choosing to cooperate
and the average cost saving ratio ri(Ā) for the allocation Ā
reached by the OPT OUT scheme, for the algorithms 1-AC,
I2-AC and I1-OC on the CAIDA graph. The figure shows
that the number of cooperating nCDNs is a decreasing convex
function of the edge ratio d, suggesting that the majority of the
nCDNs would not opt out from cooperation even if the graph
was denser. Furthermore, the number of nCDN that would not
opt out from cooperation is about 6% higher for the I1-OC
algorithm compared to the I2-AC algorithm. At the same time
the average cost saving ratio increases linearly, which is due
to that the nCDNs have access to a linearly increasing amount
of storage at neighbors.

B. Convergence Rate

We characterize the rate of convergence of the 1-AC, I2-
AC and I1-OC algorithms by comparing the number of time
steps needed to reach allocation A` during one round ` of the
OPT OUT scheme. The number of time steps needed to reach
A` is proportional to the time required by the algorithms to
converge, as it also captures the parallelism embedded in the
plesiochronous I2-AC and I1-OC algorithms.

Figure 9 shows the complementary CDF of the number
of time steps needed to reach allocation A` based on 400
simulations for the three algorithms on the CAIDA, CAIDA-BA
and CAIDA-ER graphs. The tail of each distribution decreases
exponentially or faster as the number of time steps increases,
which suggests that the rate of convergence is geometric. As
expected, the 1-AC algorithm performs worst in terms of
convergence rate, as it does not allow the nCDNs to update
their allocations simultaneously. I2-AC and I1-OC are up to
two orders of magnitude faster than 1-AC. Note that the fast
convergence of the I1-OC algorithm is achieved at the price
of increased information exchange between connected nCDNs
compared to the 1-AC and I2-AC algorithms. In practice,
the object-wise information exchange between ASs may be
problematic due to privacy concerns.

Figure 10 shows that the average number of time steps needed
to reach allocation A` is an increasing concave function of
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Fig. 9: Complementary CDF of the number of time steps needed
to reach allocation A` for the algorithms 1-AC, I2-AC and
I1-OC on the CAIDA, CAIDA-BA and CAIDA-ER graphs.
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Fig. 10: Average number of time steps needed to reach allocation
A` as a function of the edge ratio d for the three algorithms on
the CAIDA, CAIDA-BA and CAIDA-ER graphs.

the edge ratio d for all algorithms and interconnection graphs.
Observe that the three interconnection graphs rank analogously
for algorithms I2-AC and I1-OC but not for algorithm 1-AC.
The reason lies in the average sizes of the k-independent sets
used by the algorithms, which are reported in Table I. The
higher the average size of the k-independent sets, the higher
the parallelism achieved by the Ik-COMP algorithm, and the
faster the convergence. As the coloring of the interconnection
graph does not affect the performance of the 1-AC algorithm,
the rankings of the three curves in both Figures 9 and 10 reflect
other characteristics of the different network topologies.

C. Scaling for Storage Capacity

In the following we investigate the effect of increasing the
storage capacity Ki on the convergence rate of the proposed
algorithms. Figure 11 shows the average number of time steps
to reach allocation A` during one round ` of the OPT OUT
scheme. We plot one curve for each algorithm on each of the
CAIDA and CAIDA-BA graphs, as a function of the storage
capacity Ki. The convergence rate is surprisingly insensitive
to the storage capacity and the algorithms rank analogously
to Figure 10. To explain this insensitivity we plot the average
number of content item updates performed by the nCDNs
for the same algorithms and graphs in Figure 12. We make
two observations. First, the number of content item updates
is the same for 1-AC and I2-AC, as they are both based
on aggregate value compensation. The nCDNs perform less
updates using the I1-OC algorithm, as they exchange object-
wise compensations. The nCDNs perform less updates using the
I1-OC algorithm, as they exchange object-wise compensations.
Second, an nCDN can do an arbitrary number of content item
updates during one time step, thus although the number of

Graph #1-ind. sets avg. size #2-ind. sets avg. size
CAIDA 16 39.8 219 2.9
CAIDA-BA 10 63.8 131 4.9
CAIDA-ER 8 79.8 36 17.8

TABLE I: Number of k-independent sets and corresponding
average size for the CAIDA, CAIDA-BA and CAIDA-ER
interconnection graphs.

content items increases for larger storage sizes, this does not
result in slower convergence in Figure 11.

VI. RELATED WORK

Our work is related to recent works on content placement in
the context of CDNs [1], [16], [17], [18]. The majority of these
works assume a single CDN operator and optimize content
placement given a single performance objective. The authors
in [16], [17] considered centralized algorithms for content place-
ment and compared the retrieval cost for the different algorithms.
Recently, [18] considered distributed algorithms that optimize
for a single performance objective and provided analytical
results for tree networks. In contrast to these works, in this
paper we consider distributed algorithms for operator-managed
CDNs, and thus the allocations need to be individually rational.

Closely related to ours are recent works on distributed
selfish replication. Game theoretical analyses of equilibria and
convergence for distributed selfish replication were considered
in [7], [19], [20], [21], [22], [9]. The authors in [7] showed the
existence of equilibria when the access costs are homogeneous
and nodes form a complete graph. Similarly, [19], [20] assumed
homogeneous costs and calculated the social cost of equilibria.
The latter works considered that the nodes had no restriction on
where to retrieve the content from. Other works [21], [22], [9]
relax this assumption and introduce an interconnection graph to
restrict the interaction between nodes. [21] assumed unit storage
capacity and an infinite number of objects, showed the existence
of equilibria and analyzed the price of anarchy for some special
cases. [22] considered a variant of the problem where nodes
can replicate a fraction of objects, and showed the existence
of equilibria. The authors in [9] showed results in terms of
convergence to equilibria in the case of homogeneous neighbor
costs. In this paper we show that equilibrium existence results
cannot be extended to the general problem of content replication
on graphs and propose compensation-based algorithms that are
guaranteed to converge.

Individually rational allocation of costs and revenues is the
subject of cooperative game theory. Solution concepts such
as the Shapley value and the core have found application in
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the three algorithms on the CAIDA and CAIDA-BA graphs.

Internet routing [23] and in resource allocation [24], but these
solution concepts require complete information and global
enforcement, which make them impractical in the considered
scenario. To the best of our knowledge this is the first work that
proposes ex-post individually rational distributed algorithms
for interconnected CDNs.

VII. CONCLUSION

We considered the problem of computing a content allocation
among interconnected autonomous CDNs. We showed that
without payments there may be no allocation that minimizes
the cost of all CDNs, and thus payments are necessary to
guarantee that greedy algorithms would converge. For the
case that payments are possible, we proposed two bilateral
compensation-based distributed algorithms that are ex-post
individually rational. The two algorithms require different
amounts of information to be revealed by the CDNs, and allow
different levels of parallelism. Numerical results show that
the algorithms have geometric convergence, and that if CDNs
reveal more private information about their content demands,
the convergence of the algorithms becomes faster. Our results
also show that the convergence times are fairly insensitive to
the graph density and the amount of CDN storage.
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