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Abstract—Replication games are a model of the prob-
lem of content placement in computer and commu-
nication systems, when the participating nodes make
their decisions such as to maximize their individual
utilities. In this paper we consider replication games
played over arbitrary social graphs; the social graph
models limited interaction between the players due to,
e.g., the network topology. We show that in replication
games there is an equilibrium object placement for
arbitrary social graphs. Nevertheless, if all nodes follow
a myopic strategy to update their object placements
then they might cycle arbitrarily long before reaching
an equilibrium if the social graph is non-complete. We
give sufficient conditions under which such cycles do not
exist, and propose an efficient distributed algorithm to
reach an equilibrium over a non-complete social graph.

I. Introduction

Replicating content close to its users has long been
used in computer architectures and in the Internet to im-
prove system performance. In computer architectures CPU
caches have been used to decrease memory access latencies
[1]. In the Internet caches are employed to provide faster
access to content for local customers and at the same
time to decrease the amount of network traffic [2], [3],
[4]. Content replication is also at the core of clean-slate
information centric network architectures [5].

The problem of content replication is often modeled by a
distributed replication group [6], [7], [8], [9]. A replication
group consists of nodes and users located near the nodes.
The nodes can replicate objects, which are accessed by
local or remote users. The cost incurred by a user accessing
an object depends on whether the object is replicated
locally, in a remote node, or is not replicated in any
node. A commonly studied problem of replication is how
to minimize the total cost of users accessing the objects
through either optimal node placement [6] or through the
optimal allocation of objects to nodes [7].

Often there is no central authority that would be able
to enforce the optimal solution on the nodes. This can be
the case when nodes are autonomous, for example, in the
case of Internet Web and peer-to-peer content replication
[3], [4]. In lack of a central authority nodes would not
implement the optimal solution if they can individually
fare better by deviating from it [8], [9], [10]. Instead,
nodes would replicate the objects that minimize their own
costs, and would update the set of replicated objects as
a response to the decisions made by other nodes. An

important question in this case is whether there exists an
equilibrium state in terms of the objects replicated by the
nodes from which no node has an interest to deviate. A
similarly important question is whether in a distributed
system the nodes would be able to reach an equilibrium
state if each node follows a myopic strategy to minimize
its own cost. Answering these questions is a key to the
design of efficient distributed replication algorithms.

In this paper we model the problem of selfish repli-
cation as a non-cooperative graphical game. The model
of a graphical game allows us to capture the limited
interactions between nodes imposed by an underlying
communication network [10], modeled by a so called social

graph. The social graph defines neighborhood relationships
between the nodes, which influence the cost of accessing
replicas. We show that equilibrium states exist for arbi-
trary social graphs, but nodes might cycle arbitrarily long
before reaching an equilibrium state if the social graph
is non-complete. Based on our results we give a sufficient
condition under which a simple and efficient distributed al-
gorithm can be used to reach an equilibrium and illustrate
the efficiency of the algorithm with numerical results.

The structure of the paper is as follows. In Section II we
define the problem of replication and graphical replication
games. In Section III we discuss the existence of equilib-
rium states, and in Section IV we address the question
whether nodes that follow simple learning rules would
reach an equilibrium state. In Section V we show that
an efficient distributed algorithm can be used to reach an
equilibrium state under certain conditions. In Section VI
we discuss related work, and Section VII concludes the
paper.

II. System model

In the following we describe the system model, and
formulate the problem of replication as a non-cooperative
game.

A. The replication problem

We consider a set of nodes N and a set of objects O. The
demand for object o ∈ O at node i ∈ N is given by the rate
wo

i
∈ R+. We consider that every object o ∈ O has unit

size, So = 1, which is a reasonable simplification if objects
are divisible into unit-sized chunks. Node i has integer
storage capacity Ki ∈ N+, which it uses to replicate
objects locally. We describe the set of objects replicated at
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node i with the |O| dimensional vector ri = (r1
i
, . . . , r

|O|
i

),
whose component ro

i
∈ {0, 1} is 1 if object o is replicated in

node i. Due to the limited storage capacity
∑

o
ro

i
So ≤ Ki,

thus the set of feasible replication vectors for node i is
Ri = {ri|

∑

o
ro

i
So ≤ Ki} ⊆ {0, 1}|O|.

Every node is located at a vertex of an undirected graph
Γ(N, E), called the social graph. We denote the set of
neighbors of node i by N (i), i.e., N (i) = {j|(i, j) ∈ E}.
The social graph allows us to consider a generalized version
of the cost model described in [1], whose variations were
used in [8], [9], [10]. In our model the marginal cost of
accessing object o in node i is αi if the object is replicated
in node i, it is βi if it is replicated in a node j ∈ N (i)
neighboring i, and it is γi otherwise. We consider the
practically relevant case when it is not more costly to
access an object replicated locally than one replicated at a
neighbor, and it is less costly to access an object replicated
at a neighbor than retrieving it directly from the common
set of objects. Formally αi ≤ βi < γi, or equivalently

0 ≤ δi ,
βi − αi

γi − αi

< 1. (1)

To ease notation we say that an object o ∈ O is i-available

if it is replicated by at least one of node i’s neighbors in
which case

π
o

i
,

∏

j∈N (i)

(1 − r
o

j
) = 0,

otherwise we say that object o ∈ O is not i-available.
The cost of node i due to object o is proportional to

the demand wo

i
, and is a function of ri and the replication

states ro

−i
of the neighboring nodes

C
o

i
(ro

i
, r

o

−i
) = w

o

i
(αir

o

i
+ (1 − r

o

i
) [γiπ

o

i
+ βi(1 − π

o

i
)])
(2)

B. The graphical replication game

We consider a system in which the goal of every node is
to minimize its own total cost. We model this problem of
selfish replication as a multiplayer non-cooperative game
played on a graph, called a graphical game. The players
are the nodes, the set of actions of player i is Ri, and
the cost function of player i is given by Ci(ri, r−i) =
∑

o
Co

i
(ro

i
, ro

−i
). The social graph influences the cost func-

tion via the neighbor set N (i), i.e., the cost function
of player i is entirely specified by the actions of players
j ∈ N (i).

The goal of player i is to choose a replication strategy
ri that minimizes its total cost given the strategy profile
r−i of the other players

arg min
ri

Ci(ri, r−i) = arg min
ri

∑

o

C
o

i
(ro

i
, r

o

−i
). (3)

Observe that the cost of object o for player i can be
expressed as

C
o

i
(ro

i
, r

o

−i
) = C

o

i
(0, r

o

−i
) −

(

C
o

i
(0, r

o

−i
) − C

o

i
(ro

i
, r

o

−i
)
)

= C
o

i
(0, r

o

−i
) − U

o

i
(ro

i
, r

o

−i
),

where the utility Uo

i
(ro

i
, ro

−i
) is the cost saving that player

i achieves through object o given the other players’ repli-
cation strategies. The utility function of player i is the sum
of the cost savings Ui(ri, r−i) =

∑

o
Uo

i
(ro

i
, ro

−i
).

Since the cost Co

i
(0, r−i) is independent of the action

ro

i
of player i, finding the minimum cost is equivalent to

finding the maximum utility

arg min
ri

Ci(ri, r−i) = arg min
ri

∑

o

C
o

i
(ro

i
, r

o

−i
)

= arg min
ri

(

∑

o

C
o

i
(0, r

o

−i
) −

∑

o

U
o

i
(ro

i
, r

o

−i
)

)

= arg max
ri

∑

o

U
o

i
(ro

i
, r

o

−i
).

Consequently, the problem of replication can be modeled
by the strategic game G =< N, (Ri), (Ui) >.
We can express the utility Uo

i
(ro

i
, ro

−i
) of player i by

substituting (2) into the definition of the utility

U
o

i
(ro

i
, r

o

−i
) = w

o

i
[βi(1 − π

o

i
) + γiπ

o

i
] −

−w
o

i
(αir

o

i
+ (1 − r

o

i
) [βi(1 − π

o

i
) + γiπ

o

i
]) (4)

= r
o

i
w

o

i
[βi(1 − π

o

i
) + γiπ

o

i
− αi] . (5)

We note a property of the utility defined in (5): the utility
of player i due to object o is independent of the other
players’ strategies if she does not replicate the object, i.e.,
ro

i
= 0 ⇒ Uo

i
(0, ro

−i
) = 0. If player i replicates object o

then the cost saving is

U
o

i
(1, r−i) =

{

wo

i
[γi − αi] = cio if πo

i
= 1

wo

i
[βi − αi] = δicio if πo

i
= 0

(6)

Note that replicating a not i-available object o yields to
player i a cost saving of cio, while replicating an i-available

object o yields δicio < cio.

III. Existence of equilibria

The first question we address is whether in a system of
selfish nodes there is a state from which no node has an
interest to deviate unilaterally. Such an equilibrium state
is in fact a pure strategy Nash equilibrium (NE) of the
graphical replication game. Hence to answer the question
we have to find whether pure strategy NE exist in graphi-
cal replication games. It is known that for a complete social
graph pure strategy NE exist in a replication game [9], but
it is not known whether pure strategy NE exist for non-
complete social graphs. In what follows we show that pure
strategy NE exist for arbitrary social graphs.

We first define a best reply of player i as a best strategy
r∗

i
of player i given the other players’ strategies

Ui(r
∗
i
, r−i) ≥ Ui(ri, r−i) ∀ ri ∈ Ri. (7)

The NE is a strategy profile r∗ in which every player’s
strategy is a best reply to the other players’ strategies

Ui(r
∗
i
, r

∗
−i

) ≥ Ui(ri, r
∗
−i

) ∀ ri ∈ Ri, ∀ i ∈ N. (8)
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Finally, we define a best reply path as a sequence of strategy
profiles, such that in every step t there is one player that
strictly increases its utility by updating her strategy to
a best reply ri(t) with respect to the other players’ most
recent strategies r−i(t − 1). A best reply path terminates
when no player can increase its utility, in which case a NE
is reached. Hence, to show the existence of NE it is enough
to show that there is a particular strategy profile starting
from which there is at least one finite best reply path.

Consider the strategy profile r(0) that consists of the
best replies that the players would play on an edgeless so-
cial graph. In this strategy profile every player i replicates
the Ki objects with highest demands wo

i
. Let us consider

now a best reply path starting from the strategy profile
r(0). For t ≤ n each player i ∈ N has a chance to play
her first best reply at t = i. For t > n they play in an
arbitrary order. We can make two important observations
on the players’ best replies.

Lemma 1. Player i ∈ N inserts only not i-available
objects when she first updates her strategy at t = i.

Lemma 2. Consider a sequence of best reply steps and the

best reply ri(t) played by player i at step t > 0. A necessary

condition for ri(t) not being a best reply for i at step t′ > t

is that at least one of the following holds

(i) A not i-available object o replicated by i (ro

i
(t) = 1,

πo

i
(t) = 1) becomes i-available by step t′,

(ii) An i-available object o not replicated by i (ro

i
(t) = 0,

πo

i
(t) = 0 becomes not i-available by step t′.

The proofs of the Lemmas are in the Appendix. A
consequence of Lemma 1 is that an object replicated by
player i cannot change from not i-available to i-available

during the first round of best reply steps (1 ≤ t ≤ n).
Consequently, condition (i) in Lemma 2 cannot hold, and
the only reason why player i would update her strategy
a second time (at some t > n) is that condition (ii)
holds, and she would start replicating a not i-available

object. Thus, by induction, condition (i) will never hold,
and in every step t player i ∈ N only inserts not i-

available objects. Since no player ever inserts an i-available

object, according to the definition of cost saving in (6)
the utilities of the players cannot decrease for t > 0.
Nevertheless, every time a player updates her strategy her
utility must strictly increase. Since the players’ utilities
cannot increase indefinitely, the best reply path must end
in a Nash equilibrium. Hence we can state the following.

Theorem 1. Every graphical replication game possesses a

pure strategy Nash equilibrium.

For a complete social graph every player makes at most
one improvement step [9], but this does not hold even for
a simple non-complete social graph: on a ring of 4 players
with wo

i
= wo

j
(∀o ∈ O) at least one player updates her

strategy twice.

IV. Reaching an equilibrium state

The existence of equilibrium states is important, but
in a distributed system it is equally important that the
nodes would be able to reach an equilibrium state using a
distributed algorithm. One algorithm that the nodes could
use to reach an equilibrium state is the algorithm used to
prove Theorem 1. This algorithm can be adequate if the
demands for the objects in the nodes wo

i
never change,

so once a NE is reached, the nodes will not deviate from
it. Nevertheless, the algorithm would be inefficient if the
demands can change over time, as the equilibrium states
for different demands are, in general, different. Hence, an
important question is whether the players will reach a NE
given an arbitrary initial strategy profile, e.g., a NE for
past demands, and given the myopic decisions they make
to update their strategies.

Consider, for example, that in every time step t every
player i simultaneously updates her strategy to her best
reply with respect to r−i(t−1). Such a synchronous update
rule would require little coordination in a distributed
system, but unfortunately it would be difficult to reach
an equilibrium this way.

Example 1. Consider two nodes and |O| ≥ 2. Let ci1 >

ci2 > ci1δi and Ki = 1. If the initial replication strategies

are ri(0) = (1, 0) then after one step both players will have

ri(1) = (0, 1). After the second step both players will have

ri(2) = (1, 0), etc.

As an alternative, consider a sequence of best reply steps
as defined in Section III, the result of an asynchronous best
reply dynamic. A natural question is whether all best reply
paths are finite irrespective of the initial strategy profile
r(0) and the social graph. The following example shows
that, unfortunately, the answer is no in general:

Example 2. Consider a replication game played over the

social graph shown in Figure 1, where O = {A, B, C, D}

and Ki = 1 ∀i ∈ N . Each player 1 ≤ i ≤ 4 has an object

o∗ ∈ O such that cio∗ > cio ∀o 6= o∗, and at least one

object o′ ∈ O such that cio′ > cio∗δi. For players 5 ≤ i ≤ 8
there is an object o∗ ∈ O such that cio∗δi > cio ∀o 6= o∗.

An asynchronous best reply dynamic that cycles is shown

in Table I. Observe that players 5 ≤ i ≤ 8 always replicate

the object that has the highest demand at their respective

neighboring node i − 4.

These negative examples raise the question under what
conditions nodes would reach an equilibrium state in a
finite number of steps. In the following we distinguish
between complete and non-complete social graphs. We first
prove that on a complete social graph the asynchronous
best reply dynamic always results in a finite best reply
path, and then we show that under certain conditions
cycles do not exist even on non-complete social graphs.
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o∗
=B, o′

=A

o∗
=C, o′

=B o∗
=D, o′

=C

o∗
=A, o′

=D

o∗
=Ao∗

=B

o∗
=C o∗
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P 1

P 2 P 3

P 4

P 8P 5

P 6 P 7

Fig. 1: Social graph and players’ preferences that allow a
cycle in best replies.

Player P1 P2 P3 P4 P5 P6 P7 P8

r(0) A B D A B C D A

r(1) A B C A B C D A

r(2) B B C A B C D A

r(3) B B C D B C D A

r(4) B C C D B C D A

r(5) A C C D B C D A

r(6) A C D D B C D A

r(7) A B D D B C D A

r(8) A B D A B C D A

TABLE I: Cycle in best replies for the game played over
the social graph in Figure 1. An arrow shows the best reply
played at each step.

A. Best reply dynamic on a complete social graph

In the following we show that if the social graph is
complete then every best reply path is finite, that is, it
cannot contain a cycle.

Theorem 2. Every best reply path in a replication game

played over a complete social graph is finite.

Proof: We prove the theorem by contradiction. We
assume that a best reply cycle exists in the dynamic. We
then show that a strategy profile, in order to be in such a
cycle, can only contain a well-defined subset of objects and
that a best reply of a player i cannot change the number
of i-available objects she is replicating. Following these
constraints we show that such a cycle cannot exist.
Let us denote by Fi(t) the set of not i-available objects
and by Bi(t) the set of i-available objects replicated by
i at step t. Note that |Fi(t)| + |Bi(t)| = Ki. For a best
reply step performed by player i at step t let us define the
evicted set as Ei(t) = {o|ro

i
(t − 1) = 1 ∧ ro

i
(t) = 0} and

the inserted set as Ii(t) = {o|ro

i
(t − 1) = 0 ∧ ro

i
(t) = 1}.

Lemma 3. A best reply step ri(t) performed by player i in

a best reply cycle cannot affect the number of i-available
objects replicated by i, that is,

|Bi(t)| = |Bi(t − 1)|.

Lemma 4. For a best reply step ri(t) performed by player

i in a best reply cycle it holds that

w
o

′

i
< w

o

i
∀o

′
∈ Ei(t), o ∈ Ii(t).

The proofs of the lemmas are given in the Appendix.
Consider now a best reply cycle. According to Lemma 4

each best reply step can only move towards objects with
higher demand. The number of objects |O| is finite, hence
every player can only perform a finite number of best
replies and the best reply path terminates after a finite
number of steps.

By Theorem 2 we know that if the social graph is
complete and nodes update their replication strategies
to their best replies one at a time then they reach an
equilibrium state without going through any state twice.
By Example 2 we know, however, that if the social graph
is non-complete then this is not necessarily the case.

B. The case of non-complete social graph

Given that cycles might exist in the best reply paths
for non-complete social graphs, an important question is
whether the players might cycle forever without being able
to reach an equilibrium state. In the following we show
that if we consider replication games with Ki = 1, then
from every strategy profile there exists at least one finite
best reply path that leads to a NE.
Consider a best reply of a player i at step t such that
Ei(t) = {o} and Ii(t) = {o′}. We can distinguish between
four types of best replies depending on whether the in-
volved objects are i-available as shown in Table II together
with the cost savings of the objects.

Type Evicted o Inserted o′

1 i-available cioδi i-available cio′ δi

2 i-available cioδi not i-available cio′

3 not i-available cio i-available cio′ δi

4 not i-available cio not i-available cio′

TABLE II: Four possible types of a best reply move

The following two lemmas state that the strategy profiles
in a best reply cycle cannot be arbitrary.

Lemma 5. In a best reply cycle, if a player i inserts an

i-available object o then

(i) o is the object with highest demand for player i.

(ii) player i cannot insert an i-available object in her next

best reply.

Lemma 6. In every best reply cycle there exists at least

one strategy profile r(t) in which at least one player i ∈ N

can perform a best reply of type 1). Furthermore, no best

reply cycle contains a best reply of type 3).

The proofs of the lemmas are given in the Appendix.
Let us consider a strategy profile r(t) in a best reply cycle
in which at least one player i ∈ N can perform a best
reply of type 1). Such a strategy profile exists according
to Lemma 6. Starting from r(t), let us perform a sequence
of best replies of type 1). According to Lemma 5 (ii) every
player can perform only one best reply of type 1) before
performing a best reply of another type. There is a finite
number of players, so after a finite number of best replies
of type 1) we reach a strategy profile r(t′) in which there
is no player that can perform a best reply of type 1).
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If in r(t′) no player can make a best reply then r(t′) is a
NE. Otherwise, if a player i can play a best reply in r(t′)
then it must be of type 2) or of type 4). Due to a best
reply of type 2) or of type 4) condition (i) of Lemma 2
cannot hold for any player, so the only new reason why a
player j would perform a best reply is that condition (ii)
in Lemma 2 is satisfied, and she would start replicating a
not j-available object. Thus, by induction, condition (i) of
Lemma 2 will never hold, and in every step t′′ > t′ players
only perform best replies of type 2) and of type 4). A
player’s utility strictly increases when it performs a best
reply, and a best reply of type 2) and of type 4) does
not decrease any other player’s utility. Since the players’
utilities cannot increase indefinitely, this path must end in
a NE after a finite number of steps. Hence we can state
the following

Theorem 3. From every strategy profile of a graphical

replication game with Ki = 1 ∀i ∈ N there exists a best

reply path that leads to a NE in a finite number of steps.

To summarize, if the social graph is non-complete and
Ki = 1, then there exists at least one finite best reply path
to an equilibrium from every strategy profile, but not all
best reply paths are finite because cycles can exist. That is,
the game is weakly acyclic in best replies. In the following
we show that if we introduce a small restriction on the
marginal costs of accessing objects then cycles cannot exist
even if the social graph is non-complete.

We define an improvement step of player i at step t as
an update of her strategy ri(t) to ri(t + 1), such that its
utility increases

Ui(ri(t + 1), r−i(t)) > Ui(ri(t), r−i(t)). (9)

The best reply step defined in (7) is a special case of
an improvement step. A sequence of improvement steps
is called an improvement path. An improvement path
terminates when no player can perform an improvement
step, i.e., in an equilibrium.

In order to avoid cycles, we consider a subset of the set
of improvement paths. We define a lazy improvement step

of player i as an improvement step with minimal number
of changes among all improvement steps that lead to the
same utility. Formally, ri(t+1) is a lazy improvement step
if there is no r′

i
(t + 1) 6= ri(t + 1) for which

Ui(ri(t + 1), r−i(t)) = Ui(r
′
i
(t + 1), r−i(t)) and

|Ii(t + 1)| > |I
′
i
(t + 1)|.

If players only make lazy improvement steps then βi = αi

is a sufficient condition under which all improvement paths
are finite. The case βi = αi was considered as a model of
cooperative caching between peering ISPs in [10].

Proposition 4. In a graphical replication game with βi =
αi ∀i ∈ N every lazy improvement path is finite.

Proof: We prove the proposition by showing that
under the condition βi = αi the replication game has

a generalized ordinal potential function [11] for lazy im-
provement steps. A function Ψ : ×i(Ri) → R is a
generalized ordinal potential function for the game if the
change of Ψ is strictly positive if an arbitrary player i

increases its utility by changing her strategy from ri to r′
i
.

Formally,

U
o

i
(ri, r−i)−U

o

i
(r′

i
, r−i) > 0 ⇒ Ψ(ri, r−i)−Ψ(r′

i
, r−i) > 0.

In the following we show that the function

Ψ(r) =
∑

i

Ui(ri, r−i), (10)

where the utility function was defined in (5), is a general-
ized ordinal potential for the game. We substitute βi = αi

into (5) to obtain the utility function of player i

Ui(ri, r−i) =
∑

o

U
o

i
(ro

i
, r

o

−i
) = r

o

i
w

o

i
[πo

i
(γi − αi)] . (11)

Note that player i benefits only from replicating not i-

available objects. Furthermore, the utility of player i does
not depend on objects that she does not replicate herself.
Given a strategy profile r = (ri, r−i) player i can improve
its utility by combining three kinds of lazy improvement
steps.

First, if player i has free storage capacity (that is,
∑

o
ro

i
< Ki) then she has to choose an object o for

replication for which ro

i
= 0 but Uo

i
(1, r−i) > 0. By (11) we

know that object o is not i-available and hence the utility
of her neighbors will not be affected if she replicates object
o. Consequently, if we denote the new strategy of player i

by r′
i

= (r1
i
, . . . , r

o−1

i
, 1, r

o+1

i
, . . . , r

|O|
i

) then

Ψ(r′
i
, r−i) − Ψ(ri, r−i) = Ui(r

′
i
, r−i) − Ui(ri, r−i)

= U
o

i
(1, r

o

−i
) > 0.

(12)

Second, if player i stops replicating an object o for which
Uo

i
(1, ro

−i
) = 0 and starts replicating an object o′ for which

Uo
′

i
(1, ro

′

−i
) > 0. By (11) we know that object o is i-

available, but object o′ is not i-available. Let us denote
the strategy of player i after the change by r′

i
. We first

observe that the utility of the neighboring players cannot
decrease when player i stops replicating object o (it can
potentially increase). At the same time the utility of the
neighboring players does not change when player i starts
replicating object o′. Hence we have that

Ψ(r′
i
, r−i) − Ψ(ri, r−i) ≥ U

o
′

i
(r′

i
, r−i) > 0. (13)

Third, if player i stops replicating an object o for which
Uo

i
(1, ro

−i
) > 0 and starts replicating an object o′ for which

Uo
′

i
(1, ro

′

−i
) > Uo

i
(1, ro

−i
). By (11) we know that neither

object o nor o′ are i-available. Hence the utility of the
neighboring players is not affected by the change. The
utility of player i increases, however. Let us denote the
strategy of player i after the change by r′

i
, then

Ψ(r′
i
, r−i)−Ψ(ri, r−i) = U

o
′

i
(1, r−i)−U

o

i
(1, r−i) > 0. (14)
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The function Ψ satisfies (10) for the three kinds of lazy
improvement steps, and by summing (12)-(14) we can see
that it does so for the combinations of the improvement
steps too. Hence, Ψ is a generalized ordinal potential for
the game under lazy improvement steps.

Finite games that allow a generalized ordinal potential
function were shown to have the finite improvement prop-
erty in [11]. Following the arguments of (Lemma 2.3, [11])
it follows that the replication game has the finite lazy
improvement property.

It is easy to see that the above proof does not hold if
non-lazy improvement steps are allowed.

V. Fast convergence based on graph coloring

In the previous section we showed that, under certain
conditions, the players always reach a Nash equilibrium
if they update their strategies asynchronously. Unfortu-
nately the implementation of the asynchronous update
rule in a distributed system would require global synchro-
nization, which can be impractical in large distributed
systems. Hence, an important question is whether the
players would always reach a Nash equilibrium even if
some players would update their strategies simultaneously.
In the following we show that relaxing the requirement of
asynchronicity is indeed possible.

Proposition 5. Consider a graphical replication game

with βi = αi ∀i ∈ N . If player i makes an improvement step

at time t only if no neighboring player j ∈ N (i) makes an

improvement step at time t, then every lazy improvement

path is finite.

Proof: Consider a sequence of the subsets of the
players N∗(t) ⊆ N (t = 0, . . .) such that for i, j ∈ N∗(t)
we have j 6∈ N (i). The players i ∈ N∗(t) make an
improvement step at step t simultaneously from ri(t − 1)
to ri(t). Each player can combine the three kinds of lazy
improvement steps discussed in the proof of Proposition 4
to increase its utility.

Recall that for lazy improvement steps Ψ defined in (10)
is a generalized ordinal potential function for the game if
βi = αi. Since we require that none of the players that
update their strategies are neighbors of each other, then
their updates do not affect each others’ utilities. Formally,
for i ∈ N∗(t) we have

Ui(ri(t), r−i(t)) = Ui(ri(t), r−i(t − 1)). (15)

Consequently, we can use the same arguments as in the
proof of Proposition 4 to show for every i ∈ N∗(t) that

Ui(ri(t), r−i(t)) − Ui(r
′
i
(t − 1), r−i(t − 1)) > 0 ⇒

Ψ(r(t)) − Ψ(r(t − 1)) > 0.

Combining these yields that Ψ satisfies

U
o

i
(ri(t), r−i(t)) − U

o

i
(r′

i
(t − 1), r−i(t − 1)) > 0 ∀i ∈ N

∗(t)

⇒ Ψ(r(t)) − Ψ(r(t − 1)) > 0.

At every improvement step the players in N∗(t) increase
their utilities, and hence the function Ψ increases. The
function Ψ is bounded, hence it has to attain its maximum
after a finite number of lazy improvement steps.

We refer to this dynamic as the plesiochronous better

reply dynamic (PBRD), as opposed to the asynchronous
dynamic (ABRD) considered in Proposition 4. In order to
maximize the convergence speed of PBRD we need to find
a minimum vertex coloring of Γ, i.e., we have to find the
chromatic number χ(Γ) of graph Γ. Finding the chromatic
number is NP-hard in general, but efficient distributed
graph coloring algorithms exist [12], which can be used to
find a coloring in a distributed system. Given a coloring,
the number of steps required to reach equilibrium can be
significantly smaller than for ABRD for sparse graphs.

The speedup of PBRD is bounded by the graph’s chro-
matic number. In general, the chromatic number can be
bounded based on the largest eigenvalue λmax(Γ) of the
graph’s adjacency matrix [13],

χ(Γ) ≤ 1 + λmax(Γ), (16)

and the largest eigenvalue can be bounded by the maxi-
mum node degree based on the Perron-Frobenius theorem
([14], Lemma 2.8)

λmax(Γ) ≤ maxi∈N |N (i)|. (17)

In (17) equality holds for regular graphs (|N (i)| = |N (j)|
for i 6= j), and strict inequality holds otherwise. A stronger
result can be obtained for random graphs. For almost
every Erdős-Rényi random graph with |N | vertices and
edge probability p the chromatic number is [15]

χ(Γ|N |,p) =

[

1

2
+ o(1)

]

log
1

1 − p

|N |

log|N |
. (18)

We illustrate the convergence speedup of PBRD com-
pared to ABRD in Figure 2. The figure shows the average
number of steps needed to reach equilibrium as a function
of the edge probability in Erdős-Rényi random graphs
with 87 vertices. For the PBRD we used the Welsh-Powell
algorithm to find a coloring [16]. Each player had storage
capacity Ki = 5 and we used γi = 10. We considered
two scenarios: αi = βi and αi 6= βi. Each data point is
the average of the results obtained on 160 random graphs
with the same edge probability. The figure shows the 95%
confidence intervals for the case αi = βi. We omitted the
confidence intervals for αi 6= βi to improve readability.

The results confirm that PBRD converges significantly
faster compared to ABRD, especially over sparse social
graphs. The existence of cycles when αi 6= βi does not
make a significant impact on the results. The figure also
confirms that the convergence properties are different
on a complete social graph than on a sparse graph, as
the number of steps necessary for ABRD to reach a
NE drops for p = 1. This observation is in accordance
with the difference in computational complexity of finding
the optimal object replication strategy [1]: the problem
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Fig. 2: Average number of improvement steps needed to
reach a NE for ABRD and PBRD vs. the edge probability
of the Erdős-Rényi random graphs used as social graph.

is NP-complete on a non-complete social graph, but is
polynomial in the number of players if the social graph is
complete. A thorough analysis of the relationship between
the complexity of finding the optimal solution and the
convergence properties of improvement paths as a function
of the graph topology is subject of our future work.

VI. Related work

Content replication has been considered in a number of
contexts with the aim to improve system performance [1],
[2], [3], [4], [17]. Most of these works considered centralized
algorithms to maximize the overall system performance,
or compared the performance of a centralized algorithm
to that of a decentralized one [1], [17].

A few recent works provided a game theoretic analysis
of content replication by selfish agents [8], [9], [10]. [8]
considered the case with unit storage capacity and an infi-
nite number of objects, showed the existence of equilibria
and analyzed the price of anarchy for some special cases.
The problem considered there is equivalent to the facility
location problem, which is known to be a potential game
[11]. [9] considered replication on a complete social graph
and homogeneous access costs, and showed the existence
of equilibria. [10] considered a version of the game where
players can replicate a fraction of objects, and showed the
existence of equilibria.

Our work extends recent game theoretical works on
replication in several aspects. We considered the impact of
the social graph on the existence of and on the convergence
to equilibria, and provided sufficient conditions for conver-
gence on arbitrary graph topologies. Finally, we considered
a non-standard game-theoretic model of learning, which
leverages from the social graph topology, and enables to
design efficient distributed replication algorithms.

VII. Conclusion

In this paper we considered the problem of replication of
contents by a set of selfish nodes, which replicate content
to minimize their own costs. We modeled the problem as a

graphical replication game, a replication game played over
a social graph. We showed that independently of the social
graph there always exists an equilibrium state from which
no node wants to deviate, but the social graph affects
the ease of reaching such an equilibrium state. Over a
complete social graph the nodes can follow a simple myopic
strategy and would always reach an equilibrium in a finite
number of steps, but over a non-complete social graph they
could cycle arbitrarily long before reaching an equilibrium.
Finally, we provided a condition under which cycles do not
exist, and based on this result we proposed an efficient
algorithm to reach an equilibrium state over sparse social
graphs.
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Appendix

Proof of Lemma 1:

Player i first updates her strategy at t = i. Define the
evicted set as Ei(t) = {o|ro

i
(0) = 1 ∧ ro

i
(t) = 0} and the

inserted set as Ii(t) = {o|ro

i
(0) = 0 ∧ ro

i
(t) = 1}. Consider

now two objects o ∈ Ei(t = i) and o′ ∈ Ii(t = i). By
definition ro

i
(0) = 1 and ro

′

i
(0) = 0, thus by the definition
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of best reply and because of the edgeless social graph at
t = 0

cio ≥ cio′ (19)

Since o′ is inserted in place of the evicted o, at the
improvement step t = i it must hold that

U
o

′

i
(1, r−i(i)) > U

o

i
(1, r−i(i)) (20)

Considering (6), we can enumerate all the possible
relations between o and o′ according to (19):

1 cio′ ≤ cio

2 cio′ δicio

3 δicio′ < cio

4 δicio′ ≤ δicio

Case 2 represents the only possibility to satisfy (20) and
it represents the case when o′ is not i-available and o is
i-available.

Proof of Lemma 2:

According to the structure of the utility function
Ui(ri, r−i) =

∑

{o|ro

i
=1} Uo

i
(1, r−i), a best reply ri(t) can

stop to be such in two situations:

(i) The cost savings of one or more replicated objects
{o ∈ O|ro

i
(t) = 1} decrease;

(ii) The cost savings of one or more not replicated objects
{o ∈ O|ro

i
(t) = 0} increase;

According to the definition of cost saving in (6), case (i)
can happen only if some not i-available objects replicated
by i become i-available. This requires that some player j ∈

N (i) starts replicating some j-available objects. Similarly,
case (ii) can happen only if a neighbor j ∈ N (i) replicating
an object o evicts it, making object o not i-available.

Proof of Lemma 3:

Part A: First we show that |Bi(t − 1)| ≥ |Bi(t)|. Player
i can only increase the number of i-available replicated
objects if she evicts at least one not i-available object o′

from ri(t − 1) and inserts an i-available object o at step t.
Thus by (6) we have

cio′ < cioδi (21)

Since we are in a best reply cycle, at some step t′ > t

the strategy profile ri(t − 1) must become a best reply for
player i, i.e. ri(t

′) = ri(t−1). This requires either cio′ > cio

or cio′ > cioδi, and both contradict (21).
Part B: Second we show that for every step in a best
reply cycle |Bi(t − 1)| = |Bi(t)| must hold. We denote
by A(t) the set of the active objects, the objects repli-
cated by at least one player in r(t), A(t) = {o|ro

j
(t) =

1 for some j ∈ N } ⊆ O. Similarly, we denote by A(t)−i

the set of objects replicated by the players not including
i, A(t)−i = {o|ro

j
(t) = 1 for some j ∈ N \ {i} }. It is easy

to see that the sets |Fi(t)| and |A(t)| are related

|A(t)| = |A(t)−i| + |Fi(t)| (22)

On one hand, a best reply for which |Fi(t − 1)| = |Fi(t)|
does not affect |A(t)| since |A(t − 1)−i| = |A(t)−i|. On the

other hand, a best reply for which |Fi(t − 1)| > |Fi(t)|
decreases the size of set A

|A(t)| = |A(t)−i| + |Fi(t)| = |A(t − 1)−i| + |Fi(t)|

< |A(t − 1)−i| + |Fi(t − 1)| = |A(t − 1)|

Since best replies for which |Fi(t−1)| > |Fi(t)| do not exist
in a cycle (Part A), best replies for which |Fi(t − 1)| <

|Fi(t)| cannot exist either, as otherwise the size of set A

would increase indefinitely. Hence in a cycle |Fi(t − 1)| =
|Fi(t)|, which proves the lemma.

Proof of Lemma 4:

Recall that according to Lemma 3 we have |Bi(t − 1)| =
|Bi(t)| and consequently |Fi(t−1)| = |Fi(t)|. Hence we can
construct the best reply of player i by dividing the global
knapsack problem into two similar subproblems: we can
solve the knapsack problem for all the i-available objects
and populate the set Bi(t) and do the same with the set
Fi(t) using the not i-available ones. Suppose that k objects
are evicted from one set, consequently k are inserted, and
in order for the result to be the solution of the knapsack
problem, the cost saving yielded by each inserted object
must be higher than the cost saving yielded by each evicted
object. That is, for every o, o′ ∈ O, given that o was
inserted and o′ was evicted from Bi(t)

cioδi > cio′δi ⇒ w
o

i
> w

o
′

i
. (23)

Similarly, for every o, o′ ∈ O, given that o was inserted
and o′ was evicted from Fi(t)

cio > cio′ ⇒ w
o

i
> w

o
′

i
. (24)

This proves the lemma.
Proof of Lemma 5: Assume that o is not the object

with highest demand for player i. Then ∃ o′ ∈ O such that
cio′ > cio ⇒ cio′δi > cioδi. Object o′ would yield to player
i a higher cost saving than cioδi. This contradicts o being
a best reply and proves (i).
We continue by proving (ii). Assume that player i inserts
the i-available object o′ in her next best reply. From (6)
it follows that either cio′δi > cioδi or cio′δi > cio. None
of these cases is possible because according to (i) o is the
object with highest demand for player i, i.e., cio′ < cio.

Proof of Lemma 6: We prove the lemma by showing
that a move of type 1) must occur in a best reply cycle in
order for the cycle to exist. The utility of at least one player
must decrease at least once in a best reply cycle. According
to the definition of cost saving in (6), in order for the
utility Uj(r(t)) of a player j to decrease, some neighbor
i ∈ N (j) needs to start replicating some i-available object
replicated by j. It follows that, from Table II, there has
to be at least one best reply of type 1) or of type 3) in a
cycle. A best reply of type 3) would imply cio < cio′δi, but
this contradicts that object o was a best reply for player
i earlier, because its cost saving (6) is less than the cost
saving of o′. Since there cannot be a best reply of type
3) there must be at least one best reply of type 1). This
proves the lemma.
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