Content-peering Dynamics of Autonomous Caches in a Content-centric Network

Valentino Pacifici, György Dán

Laboratory for Communication Networks School of Electrical Engineering KTH, Royal Institute of Technology Stockholm - Sweden

Stockholm, December 13, 2012

Introduction		

- Caches part of the protocol stack
- Existing research optimizes global performance
 - Cache dimensioning
 - Efficient routing
 - Efficient cache eviction policies

Introduction		

- Caches part of the protocol stack
- Existing research optimizes global performance
 - Cache dimensioning
 - Efficient routing
 - Efficient cache eviction policies

Introduction		

- Caches part of the protocol stack
- Existing research optimizes global performance
 - Cache dimensioning
 - Efficient routing
 - Efficient cache eviction policies

Introduction		

- Networks of caches optimized for *local performance*
- Decrease transit traffic costs through *content-level peering*
- New challenges:
 - Stability of cache content
 - Coordination among ASes
 - Effect of eviction

	Model		
•			

	Model		
•			

	Model		
•			

	Model		
•			

	Model		
•			

• Each ISP optimizes its internal network through

- Routing of content and interest messages
- Cache dimensioning and eviction policies

	Model		
•			

• Each ISP optimizes its internal network through

- Routing of content and interest messages
- Cache dimensioning and eviction policies
- $\mathcal{L}_i = \mathcal{H}_i \cup \mathcal{C}_i \to \text{content available at ISP } i$
- $\mathcal{R}_i = \bigcup_{j \in \mathcal{N}(i)} \mathcal{L}_j \to \text{content available from the peering ISPs}$

Model		
00		

- Interest messages (i.m.) for item o at ISP i
 - $w_i^o \in \mathbb{R}_+ \to \text{average arrival intensity}$
 - Independent Reference Model (IRM):
 - inter arrival times $\sim F_i^o(x) = 1 e^{-w_i^o x}$

Model		
00		

- Interest messages (i.m.) for item o at ISP i
 - $\circ \ w_i^o \in \mathbb{R}_+ \to \text{average arrival intensity}$
 - Independent Reference Model (IRM):
 - inter arrival times $\sim F_i^o(x) = 1 e^{-w_i^o x}$
- Unit cost of serving item o at ISP i
 - α_i if o available locally or at peering ISP $(o \in \mathcal{L}_i \cup \mathcal{R}_i)$
 - γ_i if o retrieved from a transit link $(o \notin \mathcal{L}_i \cup \mathcal{R}_i)$

Model		
00		

- Interest messages (i.m.) for item o at ISP i
 - $\circ \ w_i^o \in \mathbb{R}_+ \to \text{average arrival intensity}$
 - Independent Reference Model (IRM):
 - inter arrival times $\sim F_i^o(x) = 1 e^{-w_i^o x}$
- Unit cost of serving item o at ISP i
 - α_i if o available locally or at peering ISP $(o \in \mathcal{L}_i \cup \mathcal{R}_i)$
 - γ_i if o retrieved from a transit link $(o \notin \mathcal{L}_i \cup \mathcal{R}_i)$

Total cost for ISP i:

$$C_i(\mathcal{C}_i, \mathcal{C}_{-i}) = \alpha_i \sum_{\mathcal{L}_i \cup \mathcal{R}_i} w_i^o + \gamma_i \sum_{\mathcal{O} \smallsetminus \{\mathcal{L}_i \cup \mathcal{R}_i\}} w_i^o,$$

	Perfect Information	
00	0000	

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to \text{i.m.}$ forwarded to transit provider

	Perfect Information	
00	0000	

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to \text{i.m.}$ forwarded to transit provider

Figure: No content-peering

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to \text{i.m.}$ forwarded to transit provider

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to \text{i.m.}$ forwarded to transit provider

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to \text{i.m.}$ forwarded to transit provider

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to i.m.$ forwarded to transit provider

• Need for algorithms to reach stable allocation

Model 00	Perfect Information 0000	

- Peering ISPs periodically exchange Summary cache \mathcal{L}_i
- Upon interest message for item o at ISP i:
 - if $o \in \mathcal{L}_i \to$ the item is served
 - if $o \in \mathcal{R}_i \to \text{i.m.}$ forwarded to a peer
 - if $o \notin \mathcal{R}_i \to i.m.$ forwarded to transit provider

• Need for algorithms to reach stable allocation

PERFECT INFORMATION: Perfect estimation of w_i^o

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	Perfect Information	
	0000	

Cache-or-Wait (COW) Algorithm

• Independent set $\mathcal{I} \subseteq N$: it does not contain peering ISPs

э

	Perfect Information	
	0000	

Cache-or-Wait (COW) Algorithm

• Independent set $\mathcal{I} \subseteq N$: it does not contain peering ISPs

At every time slot t:

- Pick \mathcal{I}_t .
- ISPs $i \in \mathcal{I}_t$ allowed to change their cached items $\mathcal{C}_i(t-1) \rightarrow \mathcal{C}_i(t)$

• For all
$$j \notin \mathcal{I}_t$$
, $\mathcal{C}_j(t) = \mathcal{C}_j(t-1)$.

- Inform peering ISPs about $C_i(t)$
- Transitions as a Markov Process P^0

	Perfect Information	
	0000	

Cache-or-Wait (COW) Algorithm

• Independent set $\mathcal{I} \subseteq N$: it does not contain peering ISPs

At every time slot t:

- Pick \mathcal{I}_t .
- ISPs $i \in \mathcal{I}_t$ allowed to change their cached items $\mathcal{C}_i(t-1) \rightarrow \mathcal{C}_i(t)$

• For all
$$j \notin \mathcal{I}_t$$
, $\mathcal{C}_j(t) = \mathcal{C}_j(t-1)$.

- Inform peering ISPs about $C_i(t)$
- Transitions as a Markov Process P^0

CoW terminates in an equilibrium allocation after a finite number of *efficient updates*

• At slot t no ISP $j \notin \mathcal{I}_t$ can perform an update

	Perfect Information	
	0000	

Cache-no-Wait (CNW) Algorithm

At every time slot t

- \forall ISP $i \in N$ allowed to perform efficient updates $C_i(t-1) \rightarrow C_i(t)$
- \forall ISP *i* informs the ISPs $j \in \mathcal{N}(i)$ about $\mathcal{C}_i(t)$.

		Perfect Information	
0	00	0000	

Cache-no-Wait (CNW) Algorithm

At every time slot t

- \forall ISP $i \in N$ allowed to perform efficient updates $C_i(t-1) \rightarrow C_i(t)$
- \forall ISP *i* informs the ISPs $j \in \mathcal{N}(i)$ about $\mathcal{C}_i(t)$.

CNW terminates in an equilibrium allocation with probability one.

At every time slot:

- Prob. $e^{-w_i^o\Delta}$ item o not requested
- Prob. $\epsilon(\mathcal{C}_i(t-1)) > 0$ no "useful" item requested
- Prob. $k(\mathcal{C}(t-1))$ that updating ISPs belong to an independent set

$$k(\mathcal{C}(t-1)) > \prod_{i \in \mathcal{I}_t} \left[1 - \epsilon_i(\mathcal{C}_i(t-1))\right] \cdot \prod_{i \in N \setminus \mathcal{I}_t} \epsilon_i(\mathcal{C}_i(t-1)) > 0$$

	Perfect Information	
	0000	

Numerical Results - COW vs CNW

- CAIDA graph: largest connected component in CAIDA dataset • 616 ISPs, average node degree 9.66
- Erdős-Rényi (ER) and Barabási-Albert (BA) random graphs
- Arrival intensities \sim Zipf's law with exponent 1
- Cache size 10 at every ISP

	Perfect Information	
	0000	

Numerical Results - COW vs CNW

- CAIDA graph: largest connected component in CAIDA dataset
 616 ISPs, average node degree 9.66
- Erdős-Rényi (ER) and Barabási-Albert (BA) random graphs
- Arrival intensities \sim Zipf's law with exponent 1
- Cache size 10 at every ISP

	Perfect Information $000 \bullet$	Imperfect Information 000	

Content-peering under Imperfect Information

- Avg. arrival intensities w_i^o are estimated
- Probability of misestimation:

If
$$w_i^o > w_i^p \Rightarrow P(\overline{w}_i^o < \overline{w}_i^p) \propto \epsilon e^{-\frac{1}{\beta}(w_i^o - w_i^p)}$$

- System leaves equilibrium allocations
- P^{β} regular perturbed Markov process of P^{0}

	Perfect Information 000	Imperfect Information 000	

Content-peering under Imperfect Information

- Avg. arrival intensities w_i^o are estimated
- Probability of misestimation:

If
$$w_i^o > w_i^p \Rightarrow P(\overline{w}_i^o < \overline{w}_i^p) \propto \epsilon e^{-\frac{1}{\beta}(w_i^o - w_i^p)}$$

- System leaves equilibrium allocations
- P^{β} regular perturbed Markov process of P^{0}

When $\beta \to 0$, the stationary distribution of P^{β} is a stationary distribution of $P^{0} \Rightarrow$ equilibrium allocation under perfect information.

• Some cache allocations more likely than others..

	Imperfect Information	
	000	

Imperfect Information - Disjoint Interests

• Disjoint interests case:

the K_i items with highest arrival intensity of the ISPs form disjoint sets.

The stationary distribution of P^{β} is the stable allocation C^* in which every ISP caches its most popular items.

	Imperfect Information $\bullet \circ \circ$	

Imperfect Information - Disjoint Interests

• Disjoint interests case:

the K_i items with highest arrival intensity of the ISPs form disjoint sets.

The stationary distribution of P^{β} is the stable allocation C^* in which every ISP caches its most popular items.

	Imperfect Information $\circ \bullet \circ$	

Imperfect Information - Numerical Results

- 10⁵ time slots
- 50 ISPs, $K_i = 1$ for every $i \in N$
- τ estimation interval in seconds for a LFU cache

	Imperfect Information 000	Conclusions

Conclusions

- Model of interaction between ISPs in CCNs
- Content-level peering reaches a stable allocation
- Fast convergence if no simultaneous updates by peering ISPs

	Imperfect Information $\circ \circ \circ \circ$	Conclusions

Conclusions

- Model of interaction between ISPs in CCNs
- Content-level peering reaches a stable allocation
- Fast convergence if no simultaneous updates by peering ISPs
- Incorrect estimate of content popularity
 - No stable state
 - Still cost-efficient cache allocations
 - Insights about most likely cache allocations