Selfish Content Replication on Graphs

Valentino Pacifici, György Dán

Laboratory for Communication Networks School of Electrical Engineering KTH, Royal Institute of Technology Stockholm - Sweden

San Francisco, September 7, 2011

Problem Definition		
Motivation		

The problem of content replication Scenario

• No central authority \Rightarrow Selfish nodes

Questions:

- ∃ satisfying allocation for every node?
- will the nodes be able to reach it?

Problem Definition		
Motivation		

The problem of content replication Scenario

• No central authority \Rightarrow Selfish nodes

Questions:

- ∃ satisfying allocation for every node?
- will the nodes be able to reach it?

Applications:

- CPU caches
- Network caches
- Information centric networks

Problem Definition		
Motivation		

The problem of content replication Scenario

• No central authority \Rightarrow Selfish nodes

Questions:

- ∃ satisfying allocation for every node?
- will the nodes be able to reach it?

Applications:

- CPU caches
- Network caches
- Information centric networks

2 / 13

Problem Definition $\bullet \circ$		
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

Problem Definition $\bullet \circ$		
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

Problem Definition $\bullet \circ$		
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

- $\alpha_i \leq \beta_i < \gamma_i$
- $w_i^o \in \mathbb{R}_+$ is the demand for object $o \in \mathcal{O}$ at node $i \in N$

•
$$U_i^o(1, r_{-i}) = \begin{cases} w_i^o[\gamma_i - \alpha_i] & \text{if } \pi_i^o = 1\\ w_i^o[\beta_i - \alpha_i] & \text{if } \pi_i^o = 0 \end{cases}$$

3 / 13

Problem Definition $\bullet \circ$		
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

• $\alpha_i \leq \beta_i < \gamma_i$ • $w_i^o \in \mathbb{R}_+$ is the demand for object $o \in \mathcal{O}$ at node $i \in N$

•
$$U_i^o(1, r_{-i}) = \begin{cases} w_i^o[\gamma_i - \alpha_i] & \text{if } \pi_i^o = 1\\ w_i^o[\beta_i - \alpha_i] & \text{if } \pi_i^o = 0 \end{cases}$$

3 / 13

	Equilibrium existence	
00		

The Equilibrium Concept

• Nash Equilibrium: a strategy profile r^* from which no player i wants to deviate unilaterally (i.e. given that the rest of the players play r^*_{-i})

• **Best reply** of player *i*: the best strategy r_i^* of player *i* given the other players' strategies

$$U_i(r_i^*, r_{-i}) \ge U_i(r_i, r_{-i}) \quad \forall \ r_i \in \mathcal{R}_i.$$

	Equilibrium existence	
00		

The Equilibrium Concept

• Nash Equilibrium: a strategy profile r^* from which no player i wants to deviate unilaterally (i.e. given that the rest of the players play r^*_{-i})

• Best reply of player *i*: the best strategy r_i^* of player *i* given the other players' strategies

$$U_i(r_i^*, r_{-i}) \ge U_i(r_i, r_{-i}) \quad \forall \ r_i \in \mathcal{R}_i.$$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

ъ

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

Algorithm

- **1** Play best replies in isolation
- **2** Re-arrange the players according to the social graph

э

	Equilibrium existence	
	000	
Existence of a NE		

Algorithm

- 1 Play best replies in isolation
- 2 Re-arrange the players according to the social graph
- **3** *Give* a chance to play to every player

э

	Equilibrium existence	
	000	
Existence of a NE		

Algorithm

- **1** Play best replies in isolation
- 2 Re-arrange the players according to the social graph
- 3 Give a chance to play to every player

4 Play in arbitrary order

	Equilibrium existence	
	000	
Existence of a NE		

Algorithm

- **1** Play best replies in isolation
- 2 Re-arrange the players according to the social graph
- 3 Give a chance to play to every player

NE!

Theorem

Every graphical replication game possesses a pure strategy Nash equilibrium.

	Equilibrium existence	
	000	
Existence of a NE		

Algorithm

- 1 Play best replies in isolation
- Re-arrange the players according to the social graph
- 3 Give a chance to play to every player

Theorem

Every graphical replication game possesses a pure strategy Nash equilibrium.

V. Pacifici, G. Dán (EE,KTH)

6 / 13

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 000	$\operatorname{Convergence}_{\circ\circ\circ\circ}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 000	$\operatorname{Convergence}_{\circ\circ\circ\circ}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

		Convergence	
	000		
The problem			

What if

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

Theorem

Every best reply path in a replication game played over a complete social graph is finite (i.e. does not contain any cycle).

7 / 13

	Convergence ●000	

An example of a cycle

Dem.	A <b< th=""><th>B<c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<></th></b<>	B <c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<>	C <d< th=""><th>D<a< th=""></a<></th></d<>	D <a< th=""></a<>
Player	P1	P2	P3	<i>P</i> 4
r(0)	A	В	D	А
r(1)	A	В	↓C	А
r(2)	→B	В	С	A
r(3)	В	B	С	→D
r(4)	B	↓C	С	D
r(5)	A	С	C	D
r(6)	A	C	↓D	D
r(7)	A	Ъ́В	D	D
r(8)	А	В	D	↓A

ъ

	Convergence 0●00	

An example of a cycle

В P5P8А P1P4P2P3С P6P7D

Dem.	A <b< th=""><th>B<c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<></th></b<>	B <c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<>	C <d< th=""><th>D<a< th=""></a<></th></d<>	D <a< th=""></a<>
Player	P1	P2	P3	<i>P</i> 4
r(0)	A	В	D	А
r(1)	A	В	\downarrow C	А
r(2)	↓B	В	С	A
r(3)	В	В	С	⁺D
r(4)	A	В	С	D
r(5)	А	В	С	D
r(6)	А	В	С	D
r(7)	А	В	С	D
r(8)	А	В	С	D

ъ

9 / 13

	Convergence 00●0	
More results		

Theorem

If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem

	Convergence 00●0	
More results		

Theorem

If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem

	Convergence 00●0	
More results		

Theorem

If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem

	Convergence 00●0	
More results		

Theorem

If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem

	Convergence 000●	

The plesiochronous dynamic

Theorem

If $\beta_i = \alpha_i \ \forall i \in N$ and player *i* makes an improvement step at time *t* only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time *t*, then every lazy improvement path is finite.

	Convergence 000●	
More results		

The plesiochronous dynamic

Theorem

If $\beta_i = \alpha_i \ \forall i \in N$ and player *i* makes an improvement step at time *t* only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time *t*, then every lazy improvement path is finite.

	Convergence 000●	

The plesiochronous dynamic

Theorem

If $\beta_i = \alpha_i \ \forall i \in N$ and player *i* makes an improvement step at time *t* only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time *t*, then every lazy improvement path is finite.

Conclusion and future work

• Conclusions

- Every replication game possesses a Nash equilibrium
- Sufficient condition to reach a Nash equilibrium
- Speedup from the plesiochronous dynamic

• Future work

- Investigate the existence of paths to the equibria in the general case
- Extend the model to include the cost for replication

Conclusion and future work

• Conclusions

- Every replication game possesses a Nash equilibrium
- Sufficient condition to reach a Nash equilibrium
- Speedup from the plesiochronous dynamic

• Future work

- Investigate the existence of paths to the equibria in the general case
- Extend the model to include the cost for replication

	Conclusions

Selfish Content Replication on Graphs

Valentino Pacifici, György Dán

Laboratory for Communication Networks School of Electrical Engineering KTH, Royal Institute of Technology Stockholm - Sweden

San Francisco, September 7, 2011

13 / 13