Distributed Algorithms for Content Allocation in Interconnected Content Distribution Networks

Valentino Pacifici, György Dán

Laboratory for Communication Networks KTH Royal Institute of Technology Stockholm, Sweden

Hong Kong, April 30, 2015

Booming Content Delivery Market

Content Distribution in the Internet

- 2009: P2P traffic \rightarrow up to 70 % of Internet traffic
- 2013: Netflix + YouTube \rightarrow 50 % fixed network traffic
- 2017: Video traffic \rightarrow 80 % of IP traffic

Booming Content Delivery Market

Content Distribution in the Internet

- 2009: P2P traffic \rightarrow up to 70 % of Internet traffic
- 2013: Netflix + YouTube \rightarrow 50 % fixed network traffic
- 2017: Video traffic \rightarrow 80 % of IP traffic

Over-the-top Content providers

- \uparrow Quality of delivered content
- \uparrow User demand for content

• ↑ Revenue

Booming Content Delivery Market

Content Distribution in the Internet

- 2009: P2P traffic \rightarrow up to 70 % of Internet traffic
- 2013: Netflix + YouTube \rightarrow 50 % fixed network traffic
- 2017: Video traffic \rightarrow 80 % of IP traffic

Over-the-top Content providers

- \uparrow Quality of delivered content
- \uparrow User demand for content

• \uparrow Revenue

• ↑ Revenue

- 4 同 6 - 4 回 6 - 4 回

Content Delivery Networks (CDNs)

- \uparrow Delivered content on behalf of OTT providers
- \uparrow 2017: delivery of $\frac{2}{3}$ of total video traffic

Network Operator Managed CDNs

Network operators

• Content distribution stresses network infrastructure (OTT, P2P)

 \downarrow

• Network operators not part of revenue chain

Network Operator Managed CDNs

Network operators

- Content distribution stresses network infrastructure (OTT, P2P)
- Network operators not part of revenue chain

Network Operator Managed CDNs (nCDNs)

- Storage of content close to the customers
- Objectives:
 - **1** Improve user's QoE \rightarrow decrease latency
 - **2** Decrease traffic cost \rightarrow decrease network traffic

Network Operator Managed CDNs

Network operators

- Content distribution stresses network infrastructure (OTT, P2P)
- Network operators not part of revenue chain

Network Operator Managed CDNs (nCDNs)

- Storage of content close to the customers
- Objectives:

1 Improve user's $QoE \rightarrow decrease latency$

2 Decrease traffic cost \rightarrow decrease network traffic

Content Allocation Problem

- nCDNs periodically update content allocation based on predicted demands
- **Pre-fetching**: nCDN *i* decides on allocation $A_i \in \mathcal{O}$ and fetches the content

• nCDN optimized for *local performance*

V. Pacifici, G. Dán (EE,KTH) Replication in Interconnected nCDNs

• nCDN optimized for *local performance*

• nCDN optimized for *local performance*

Interconnected nCDNs

- Maximize users' QoE
 - Retrieve items from connected nCDNs with lowest latency

• nCDN optimized for *local performance*

Interconnected nCDNs

- Maximize users' QoE
 - Retrieve items from connected nCDNs with lowest latency

Cost for serving one request (latency)

• α_i from own nCDN i

• nCDN optimized for *local performance*

Interconnected nCDNs

- Maximize users' QoE
 - Retrieve items from connected nCDNs with lowest latency

Cost for serving one request (latency)

- α_i from own nCDN i
- β_i^j from connected nCDN j

• nCDN optimized for *local performance*

Interconnected nCDNs

- Maximize users' QoE
 - Retrieve items from connected nCDNs with lowest latency

Cost for serving one request (latency)

- α_i from own nCDN i
- β_i^j from connected nCDN j
- γ_i from content provider

 $\alpha_i \le \beta_i^j < \gamma_i$

- K_i storage capacity of nCDN i
- $w_i^o \in \mathbb{R}_+$ demand for item $o \in \mathcal{O}$ at nCDN i
- $\mathcal{R}_i = \bigcup_{j \in \mathcal{N}(i)} A_j \rightarrow \text{content available from connected nCDNs}$
- $\beta_i^o(A_{-i}) \triangleq \min_{j \in \mathcal{N}(i)} \{\beta_i^j | o \in A_j\} \to \text{lowest latency to retrieve item } o$

・何ト イラト イラト 一戸

- K_i storage capacity of nCDN i
- $w_i^o \in \mathbb{R}_+$ demand for item $o \in \mathcal{O}$ at nCDN i
- $\mathcal{R}_i = \bigcup_{j \in \mathcal{N}(i)} A_j \rightarrow \text{content available from connected nCDNs}$
- $\beta_i^o(A_{-i}) \triangleq \min_{j \in \mathcal{N}(i)} \{ \beta_i^j | o \in A_j \} \to \text{lowest latency to retrieve item } o$

Average latency experienced by customers of operator i:

$$C_i(A_i, A_{-i}) = \sum_{A_i} w_i^o \alpha_i$$

V. Pacifici, G. Dán (EE,KTH) Replication in Interconnected nCDNs

<回と < 回と < 回と

- K_i storage capacity of nCDN i
- $w_i^o \in \mathbb{R}_+$ demand for item $o \in \mathcal{O}$ at nCDN i
- $\mathcal{R}_i = \bigcup_{j \in \mathcal{N}(i)} A_j \rightarrow \text{content available from connected nCDNs}$
- $\beta_i^o(A_{-i}) \triangleq \min_{j \in \mathcal{N}(i)} \{ \beta_i^j | o \in A_j \} \to \text{lowest latency to retrieve item } o$

Average latency experienced by customers of operator i:

$$C_i(A_i, A_{-i}) = \sum_{A_i} w_i^o \alpha_i + \sum_{\mathcal{R}_i} w_i^o \beta_i^o(A_{-i})$$

V. Pacifici, G. Dán (EE,KTH) Replication in Interconnected nCDNs

<回と < 回と < 回と

- K_i storage capacity of nCDN i
- $w_i^o \in \mathbb{R}_+$ demand for item $o \in \mathcal{O}$ at nCDN i
- $\mathcal{R}_i = \bigcup_{j \in \mathcal{N}(i)} A_j \rightarrow \text{content available from connected nCDNs}$
- $\beta_i^o(A_{-i}) \triangleq \min_{j \in \mathcal{N}(i)} \{ \beta_i^j | o \in A_j \} \to \text{lowest latency to retrieve item } o$

Average latency experienced by customers of operator i:

$$C_i(A_i, A_{-i}) = \sum_{A_i} w_i^o \alpha_i + \sum_{\mathcal{R}_i} w_i^o \beta_i^o(A_{-i}) + \sum_{\mathcal{O} \smallsetminus \{A_i \cup \mathcal{R}_i\}} w_i^o \gamma_i$$

<回と < 回と < 回と

Distributed algorithm - desiderata

1 nCDN *i* exchange information only with connected $\mathcal{N}(i)$

Distributed algorithm - desiderata

- **1** nCDN *i* exchange information only with connected $\mathcal{N}(i)$
- **2** Reveals little information about w_i^o

Distributed algorithm - desiderata

- **1** nCDN *i* exchange information only with connected $\mathcal{N}(i)$
- **2** Reveals little information about w_i^o
- **3** Leads to content allocation $\overline{A} = (A_i)_{i \in N}$ that is *individually rational*

Distributed algorithm - desiderata

- **1** nCDN *i* exchange information only with connected $\mathcal{N}(i)$
- **2** Reveals little information about w_i^o
- **3** Leads to content allocation $\overline{A} = (A_i)_{i \in N}$ that is *individually rational*

Individual rationality

• $r_i(A)$ cost saving ratio for nCDN *i* in allocation A

 $r_i(A) = \frac{\text{cost saving coop.}}{\text{cost saving$ **no** $coop.}}$

Distributed algorithm - desiderata

- **1** nCDN *i* exchange information only with connected $\mathcal{N}(i)$
- **2** Reveals little information about w_i^o
- **3** Leads to content allocation $\overline{A} = (A_i)_{i \in N}$ that is *individually rational*

Individual rationality

• $r_i(A)$ cost saving ratio for nCDN *i* in allocation A

 $r_i(A) = \frac{\text{cost saving coop.}}{\text{cost saving$ **no** $coop.}}$

$$r_i(A) > 1$$

nCDN *i* benefits from cooperation

Distributed algorithm - desiderata

- **1** nCDN *i* exchange information only with connected $\mathcal{N}(i)$
- **2** Reveals little information about w_i^o
- **3** Leads to content allocation $\overline{A} = (A_i)_{i \in N}$ that is *individually rational*

Individual rationality

• $r_i(A)$ cost saving ratio for nCDN *i* in allocation A

$$r_i(A) = \frac{\text{cost saving coop.}}{\text{cost saving no coop.}}$$

$$r_i(A) > 1$$

nCDN *i* benefits from cooperation $r_i(A) \ge 1$
 A_i individually rationa

Self-enforcing Content Allocations

- Every nCDN *i* allocates A_i to minimize $C_i(A_i, A_{-i})$ given A_{-i}
- Compatible with operators' selfish interests

Self-enforcing Content Allocations

- Every nCDN *i* allocates A_i to minimize $C_i(A_i, A_{-i})$ given A_{-i}
- Compatible with operators' selfish interests
- Enforced without bilateral payments \rightarrow self-enforcing allocation

$$(A_i^*)_{i \in N} \quad \text{s.t.} \quad A_i^* \in \arg\min_{A_i} C_i(A_i, A_{-i}^*).$$

Nash Equilibrium of strategic game $\Gamma = \langle N, (\mathcal{A}_i)_{i \in N}, (C_i)_{i \in N} \rangle$

Self-enforcing Content Allocations

- Every nCDN *i* allocates A_i to minimize $C_i(A_i, A_{-i})$ given A_{-i}
- Compatible with operators' selfish interests
- Enforced without bilateral payments \rightarrow self-enforcing allocation

$$(A_i^*)_{i \in N} \text{ s.t. } A_i^* \in \arg\min_{A_i} C_i(A_i, A_{-i}^*).$$

Nash Equilibrium of strategic game $\Gamma = \langle N, (\mathcal{A}_i)_{i \in N}, (C_i)_{i \in N} \rangle$

Distributed Local-Greedy Algorithm

- For each nCDN i
- Compute cost saving for each $o \in \mathcal{O}$ given A_{-i}

$$CS_i^o(1, A_{-i}) = \begin{cases} w_i^o \left[\gamma_i - \alpha_i\right] & \text{if } o \notin \mathcal{R}_i \\ w_i^o \left[\beta_i^o(A_{-i}) - \alpha_i\right] & \text{if } o \in \mathcal{R}_i \end{cases}$$

• Store K_i items with highest cost saving

Open questions

- \exists self-enforcing content allocation $A^* = (A_i^*)_{i \in N}$
- Convergence of Distributed Local-Greedy to A^*

Open questions

- \exists self-enforcing content allocation $A^* = (A_i^*)_{i \in N}$
- Convergence of Distributed *Local-Greedy* to A^*

Example

- nCDNs $N = \{1, ..., 5\}$
- Content items $\mathcal{O} = \{a, b, c, d\}$
- $\exists \alpha_i, \beta_i^j, \gamma_i \text{ and } w_i^o$

Open questions

- \exists self-enforcing content allocation $A^* = (A_i^*)_{i \in N}$
- Convergence of Distributed *Local-Greedy* to A^*

Example

• Content items
$$\mathcal{O} = \{a, b, c, d\}$$

•
$$\exists \alpha_i, \beta_i^j, \gamma_i \text{ and } w_i^c$$

$$\begin{array}{cccc} (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{4} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{b}) \xrightarrow{}_{3} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{d},\boldsymbol{b}) \xrightarrow{}_{2} & (\boldsymbol{a},\boldsymbol{c},\boldsymbol{d},\boldsymbol{b}) \xrightarrow{}_{1} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{d},\boldsymbol{b}) \\ \xrightarrow{}_{4} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{d},\boldsymbol{d}) \xrightarrow{}_{3} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{2} & (\boldsymbol{b},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{1} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \end{array}$$

Open questions

- \exists self-enforcing content allocation $A^* = (A_i^*)_{i \in N}$
- Convergence of Distributed *Local-Greedy* to A^*

Example

• Content items
$$\mathcal{O} = \{a, b, c, d\}$$

•
$$\exists \alpha_i, \beta_i^j, \gamma_i \text{ and } w_i^o$$

$$\begin{array}{cccc} (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{4} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{b}) \xrightarrow{}_{3} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{d},\boldsymbol{b}) \xrightarrow{}_{2} & (\boldsymbol{a},\boldsymbol{c},\boldsymbol{d},\boldsymbol{b}) \xrightarrow{}_{1} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{d},\boldsymbol{b}) \\ \xrightarrow{}_{4} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{d},\boldsymbol{d}) \xrightarrow{}_{3} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{2} & (\boldsymbol{b},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{1} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \end{array}$$

Theorem: Self-enforcing content allocations might not exist

(4) (3) (4) (4) (4)

Open questions

- \exists self-enforcing content allocation $A^* = (A_i^*)_{i \in N}$
- Convergence of Distributed *Local-Greedy* to A^*

Example

$$\begin{array}{cccc} (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{4} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{b}) \xrightarrow{}_{3} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{d},\boldsymbol{b}) \xrightarrow{}_{2} & (\boldsymbol{a},\boldsymbol{c},\boldsymbol{d},\boldsymbol{b}) \xrightarrow{}_{1} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{d},\boldsymbol{b}) \\ \xrightarrow{}_{4} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{d},\boldsymbol{d}) \xrightarrow{}_{3} & (\boldsymbol{b},\boldsymbol{c},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{2} & (\boldsymbol{b},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \xrightarrow{}_{1} & (\boldsymbol{a},\boldsymbol{b},\boldsymbol{c},\boldsymbol{d}) \end{array}$$

Theorem: Self-enforcing content allocations might not exist

Corollary:
$$\alpha_i = \alpha, \gamma_i = \gamma$$
, and $\beta_i^j = \beta_j^i$ do not help!

Bilateral Compensation-based Algorithms

- Introduce periodic **bilateral payments** among nCDNs
- **Open question**: \exists stable content allocation A

3.1 4.3

Bilateral Compensation-based Algorithms

- Introduce periodic **bilateral payments** among nCDNs
- **Open question**: \exists stable content allocation A

Bilateral compensation-based algorithms in a nutshell

- At every time step t
 - **1** nCDNs in set N_t allowed to propose allocation update
 - **2** Connected nCDNs $j \in \mathcal{N}(N_t)$ can offer payments to dissuade N_t

Bilateral Compensation-based Algorithms

- Introduce periodic **bilateral payments** among nCDNs
- **Open question**: \exists stable content allocation A

Bilateral compensation-based algorithms in a nutshell

- At every time step t
 - 1 nCDNs in set N_t allowed to propose allocation update
 - **2** Connected nCDNs $j \in \mathcal{N}(N_t)$ can offer payments to dissuade N_t

Synchronization schemes

Asynchronous	Plesiochronous	Synchronous
$ N_t = 1$	$N_t \subset N$	$N_t = N$

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - 2 nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** All nCDNs $j \in \mathcal{N}(i)$ s.t. $\Delta C_j > 0$ offer a compensation $p_j^i = \Delta C_j$

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** All nCDNs $j \in \mathcal{N}(i)$ s.t. $\Delta C_j > 0$ offer a compensation $p_j^i = \Delta C_j$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} p_j^i < -\Delta C_i(t)$$

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** All nCDNs $j \in \mathcal{N}(i)$ s.t. $\Delta C_j > 0$ offer a compensation $p_j^i = \Delta C_j$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} p_j^i < -\Delta C_i(t)$$

Asynchronous operation, $|N_t| = 1$

Theorem: AC algorithm terminates in a finite number of steps (1-AC)

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** All nCDNs $j \in \mathcal{N}(i)$ s.t. $\Delta C_j > 0$ offer a compensation $p_j^i = \Delta C_j$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} p_j^i < -\Delta C_i(t)$$

Asynchronous operation, $|N_t| = 1$

Theorem: AC algorithm terminates in a finite number of steps (1-AC)

Plesiochronous operation, $N_t \subset N$

Theorem: If N_t is 2-independent set of $\mathcal{G} \Rightarrow AC$ algorithm terminates in a finite number of steps (\mathcal{I}^2 -AC)

- Distance between any two vertexes of N_t is at least 3
 - Few nodes update at each time step
 - Needs coordination scheme over 2-hops neighbours

• At every time step t

1 \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$

2 nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$

-

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - 2 nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** $j \in \mathcal{N}(N_t)$ offers compensation $p_{j,o}^k = \Delta C_j^o$ for each individual item *o* to nCDN $k \in N_t$ s.t

・ 同 ト ・ ヨ ト ・ ヨ ト

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** $j \in \mathcal{N}(N_t)$ offers compensation $p_{j,o}^k = \Delta C_j^o$ for each individual item *o* to nCDN $k \in N_t$ s.t
 - nCDN k evicting item o and
 - lowest latency, i.e. $k = \min_{i \in \mathcal{N}(j)} \{\beta_j^i | o \in A_i\}$

(日本)

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - **3** $j \in \mathcal{N}(N_t)$ offers compensation $p_{j,o}^k = \Delta C_j^o$ for each individual item *o* to nCDN $k \in N_t$ s.t
 - nCDN k evicting item o and
 - lowest latency, i.e. $k = \min_{i \in \mathcal{N}(j)} \{\beta_j^i | o \in A_i\}$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} \sum_{o \in \mathcal{O}} p_{j,o}^i < -\Delta C_i(t)$$

(1日) (1日) (1日)

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - 3 j ∈ N(N_t) offers compensation p^k_{j,o} = ΔC^o_j for each individual item o to nCDN k ∈ N_t s.t
 - nCDN k evicting item o and
 - lowest latency, i.e. $k = \min_{i \in \mathcal{N}(j)} \{\beta_j^i | o \in A_i\}$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} \sum_{o \in \mathcal{O}} p_{j,o}^i < -\Delta C_i(t)$$

Plesiochronous operation, $N_t \subset N$

Theorem: If N_t is 1-independent set of $\mathcal{G} \Rightarrow \text{OC}$ algorithm terminates in a finite number of steps (\mathcal{I}^1 -OC)

11 / 16

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - 3 j ∈ N(N_t) offers compensation p^k_{j,o} = ΔC^o_j for each individual item o to nCDN k ∈ N_t s.t
 - nCDN k evicting item o and
 - lowest latency, i.e. $k = \min_{i \in \mathcal{N}(j)} \{\beta_j^i | o \in A_i\}$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} \sum_{o \in \mathcal{O}} p_{j,o}^i < -\Delta C_i(t)$$

Plesiochronous operation, $N_t \subset N$

Theorem: If N_t is 1-independent set of $\mathcal{G} \Rightarrow \text{OC}$ algorithm terminates in a finite number of steps (\mathcal{I}^1 -OC)

- \uparrow On average $|\mathcal{I}^1| >> |\mathcal{I}^2|$
- $\downarrow \mathcal{I}^1$ -OC reveals more information about w_i^o

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへの

- At every time step t
 - **1** \forall nCDN $i \in N_t$ computes $A_i(t)$ that decreases its cost, i.e. $\Delta C_i < 0$
 - **2** nCDN *i* communicates $A_i(t)$ to all neighboring nCDNs $j \in \mathcal{N}(i)$
 - 3 j ∈ N(N_t) offers compensation p^k_{j,o} = ΔC^o_j for each individual item o to nCDN k ∈ N_t s.t
 - nCDN k evicting item o and
 - lowest latency, i.e. $k = \min_{i \in \mathcal{N}(j)} \{ \beta_j^i | o \in A_i \}$
 - **4** nCDN *i* updates its content allocation to $A_i(t)$ only if

$$\sum_{j \in \mathcal{N}(i)} \sum_{o \in \mathcal{O}} p_{j,o}^i < -\Delta C_i(t)$$

Plesiochronous operation, $N_t \subset N$

Theorem: If N_t is 1-independent set of $\mathcal{G} \Rightarrow \text{OC}$ algorithm terminates in a finite number of steps (\mathcal{I}^1 -OC)

- \uparrow On average $|\mathcal{I}^1| >> |\mathcal{I}^2|$
- $\downarrow \mathcal{I}^1$ -OC reveals more information about w_i^o
- Neither AC nor OC ensure individual rationality!

Opt Out scheme

- Set $N_{\text{COOP}} \leftarrow N$, until individual rationality achieved **do**
 - **1** Run algorithm AC or OC \leftarrow termination in A
 - 2 Exlcude nCDNs k s.t. $r_k(\mathbf{A}) < 1$,
 - $N_{\text{COOP}} \leftarrow \{i | r_i(\boldsymbol{A}) \ge 1\}$
 - Excluded nCDNs k do not cooperate, i.e. A_k^I

Opt Out scheme

• Set $N_{\text{COOP}} \leftarrow N$, until individual rationality achieved **do**

- **1** Run algorithm AC or OC \leftarrow termination in A
- 2 Exlcude nCDNs k s.t. $r_k(\mathbf{A}) < 1$,
 - $N_{\text{COOP}} \leftarrow \{i | r_i(\boldsymbol{A}) \ge 1\}$
 - Excluded nCDNs k do not cooperate, i.e. A_k^I

NUMERICAL RESULTS - IMPACT OF GRAPH TOPOLOGY

- CAIDA dataset AS-level topology
- European ASes with $> 2^{16}$ alloc. IPs
- CAIDA: |N| = 638, avg. node degree 10.8
- CAIDA-ER: Erdős-Rényi
- CAIDA-BA: Barabási-Albert

Opt Out scheme

• Set $N_{\text{COOP}} \leftarrow N$, until individual rationality achieved **do**

- **1** Run algorithm AC or OC \leftarrow termination in A
- 2 Exlcude nCDNs k s.t. $r_k(\mathbf{A}) < 1$,
 - $N_{\text{COOP}} \leftarrow \{i | r_i(\boldsymbol{A}) \ge 1\}$
 - Excluded nCDNs k do not cooperate, i.e. A_k^I

NUMERICAL RESULTS - IMPACT OF GRAPH TOPOLOGY

- CAIDA: |N| = 638, avg. node degree 10.8
- CAIDA-ER: Erdős-Rényi
- CAIDA-BA: Barabási-Albert

Opt Out scheme

• Set $N_{\text{COOP}} \leftarrow N$, until individual rationality achieved **do**

- **1** Run algorithm AC or OC \leftarrow termination in A
- 2 Exlcude nCDNs k s.t. $r_k(\mathbf{A}) < 1$,
 - $N_{\text{COOP}} \leftarrow \{i | r_i(\boldsymbol{A}) \ge 1\}$
 - Excluded nCDNs k do not cooperate, i.e. A_k^I

NUMERICAL RESULTS - IMPACT OF GRAPH TOPOLOGY

- CAIDA dataset AS-level topology
- European ASes with $> 2^{16}$ alloc. IPs
- CAIDA: |N| = 638, avg. node degree 10.8
- CAIDA-ER: Erdős-Rényi
- CAIDA-BA: Barabási-Albert

Numerical Results - Convergence Rate

13 / 16

ъ

Numerical Results - Convergence Rate

Graph	\mathcal{I}^1 sets avg. size	\mathcal{I}^2 sets avg. size
CAIDA	39.8	2.9
CAIDA-BA	63.8	4.9
CAIDA-ER	79.8	17.8

V. Pacifici, G. Dán (EE,KTH) Replication in Interconnected nCDNs

Apr 30, 2015

-

13 / 16

ъ

• Increasing storage capacity K_i at every nCDN $i \in N$

A D N A B N A B N

э

• Increasing storage capacity K_i at every nCDN $i \in N$

• Increasing storage capacity K_i at every nCDN $i \in N$

• Convergence rate insensitive to K_i

• Increasing storage capacity K_i at every nCDN $i \in N$

• Convergence rate insensitive to K_i

• Increasing storage capacity K_i at every nCDN $i \in N$

• Convergence rate insensitive to K_i

- *-AC: Same # of item updates
- \mathcal{I}^1 -OC more efficient
- $\uparrow \#$ item updates $\neq \uparrow$ conv. rate

Interconnected Operator Managed CDNs

- Retrieval of content from connected nCDNs
- Individually rational content allocation •

ъ

Interconnected Operator Managed CDNs

- Retrieval of content from connected nCDNs
- Individually rational content allocation

Self-enforcing Content Allocations

• Distributed greedy cost minimization not suitable

Interconnected Operator Managed CDNs

- Retrieval of content from connected nCDNs
- Individually rational content allocation

Self-enforcing Content Allocations

• Distributed greedy cost minimization not suitable

Stable Allocations

- Bilateral compensation-based algorithms reach stable allocations
- Faster convergence at the cost of revealing information

Interconnected Operator Managed CDNs

- Retrieval of content from connected nCDNs
- Individually rational content allocation

Self-enforcing Content Allocations

Distributed greedy cost minimization not suitable

Stable Allocations

- Bilateral compensation-based algorithms reach stable allocations
- Faster convergence at the cost of revealing information

Individual Rationality

- Individual rationality of stable allocations depends on graph topology
- At least 80% of nCDNs have incentive to cooperate

э

< 17 b

Distributed Algorithms for Content Allocation in Interconnected Content Distribution Networks

Valentino Pacifici, György Dán

Laboratory for Communication Networks KTH Royal Institute of Technology Stockholm, Sweden

Hong Kong, April 30, 2015